
SC
IEN
CE

United States
Environmental Protection
Agency

EPANET Multi-Species Extension
User’s Manual

Office of Research and Development
National Homeland Security Research Center

This page intentionally left blank.

EPA/600/S-07/021
Revised January 2008

EPANET MULTI-SPECIES EXTENSION

USER’S MANUAL

By

Feng Shang
James G. Uber

University of Cincinnati
Cincinnati, OH 45221

Lewis A. Rossman
Water Supply and Water Resources Division

National Risk Management Research Laboratory
Cincinnati, OH 45268

EPA NHSRC Project Officer: Robert Janke
EPA NHSRC Technical Lead: Regan Murray
National Homeland Security Research Center

Cincinnati, Ohio 45268

NATIONAL RISK MANAGEMENT RESEARCH LABORATORY
NATIONAL HOMELAND SECURITY RESEARCH CENTER

OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY

CINCINNATI, OH 45268

 2

DISCLAIMER

The information in this document has been funded wholly or in part by the U.S.
Environmental Protection Agency (EPA). It has been subjected to the Agency’s
peer and administrative review, and has been approved for publication as an
EPA document. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

The computer programs described in this manual are subject to copyright. They
are free software that can be redistributed and/or modified under the terms of the
GNU Lesser General Public License as published by the Free Software
Foundation. Specifications of these terms are included with the EPANET-MSX
software distribution.

These programs are distributed in the hope that they will be useful, but without
any warranty; without even the implied warranty of merchantability or fitness
for a particular purpose. See the GNU Lesser General Public License for more
details.

The authors and the U.S. Environmental Protection Agency are not responsible
and assume no liability whatsoever for any results or any use made of the results
obtained from these programs, nor for any damages or litigation that result from
the use of these programs for any purpose.

 3

FOREWORD

The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation’s
land, air, and water resources. Under a mandate of national environmental laws, the Agency strives
to formulate and implement actions leading to a compatible balance between human activities and
the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research
program is providing data and technical support for solving environmental problems today and
building a science knowledge base necessary to manage our ecological resources wisely,
understand how pollutants affect our health, and prevent or reduce environmental risks in the
future.

The National Risk Management Research Laboratory is the Agency’s center for investigation of
technological and management approaches for reducing risks from threats to human health and the
environment. The focus of the Laboratory’s research program is on methods for the prevention and
control of pollution to the air, land, water, and subsurface resources; protection of water quality in
public water systems; remediation of contaminated sites and ground water; and prevention and
control of indoor air pollution. The goal of this research effort is to catalyze development and
implementation of innovative, cost-effective environmental technologies; develop scientific and
engineering information needed by EPA to support regulatory and policy decisions; and provide
technical support and information transfer to ensure effective implementation of environmental
regulations and strategies.

The National Homeland Security Research Center (NHSRC) was formed in 2002 to conduct
research in support of EPA’s role in homeland security. NHSRC research efforts focus on five
areas: water infrastructure protection, threat and consequence assessment, decontamination and
consequence management, response capability enhancement, and homeland security technology
testing and evaluation. EPA is the lead federal agency for drinking water and wastewater systems
and the NHSRC is working to reduce system vulnerabilities, prevent and prepare for terrorist
attacks, minimize public health impacts and infrastructure damage, and enhance recovery efforts.

This Users Manual for the EPANET-MSX software package has been produced as a joint effort of
the NRMRL and NHSRC. It is published and made available by EPA’s Office of Research and
Development to assist the user community and to link researchers with their clients.

Sally C. Gutierrez, Director
National Risk Management Research Laboratory

Jonathan Herrmann, Director

National Homeland Security Research Center

 4

ACKNOWLEDGEMENTS

Partial support for the work described in this manual was provided by the U.S. Environmental
Protection Agency’s National Homeland Security Research Center under Contract Number EP-C-
05-056 to Pegasus Technical Services, Inc.

The authors wish to acknowledge the contributions made by Robert Janke and Regan Murray of the
EPA’s National Homeland Security Research Center to the development of the EPANET-MSX
software.

 5

CONTENTS

1. INTRODUCTION .. 7

2. CONCEPTUAL FRAMEWORK ... 9

3. PROGRAM USAGE .. 16

4. INPUT FILE FORMAT .. 31

5. EXAMPLE REACTION SYSTEMS ... 50

6. REFERENCES ... 67

APPENDIX A. MSX TOOLKIT FUNCTIONS ... 68

APPENDIX B. BINARY OUTPUT FILE FORMAT ... 107

APPENDIX C. MSX ERROR CODES ... 108

 6

This page intentionally blank.

 7

1. INTRODUCTION

EPANET (Rossman, 2000) is a widely used program for modeling the hydraulic and water quality
behavior of drinking water distribution systems. Its water quality component is limited to tracking
the transport and fate of just a single chemical species, such as fluoride used in a tracer study or
free chlorine used in a disinfectant decay study. This manual describes an extension to the original
EPANET that allows it to model any system of multiple, interacting chemical species. This
capability has been incorporated into both a stand-alone executable program as well as a toolkit
library of functions that programmers can use to build custom applications. This set of software
tools is referred to as EPANET-MSX, where MSX stands for Multi-Species Extension.

Many water quality problems in distribution systems can only be analyzed by using a multi-species
approach. Consider the following descriptive examples:

 Free chlorine disinfectant is lost in bulk solution due mainly to oxidation-reduction
reactions involving HOCl and OCl- and natural organic matter (NOM). The NOM itself is a
heterogeneous mixture of organic compounds (e.g., humic and fulvic acids) of varying
chemical characteristics. Current single-species models, however, must model free chlorine
loss under the assumption that all other reactants are in excess and thus their concentrations
can be considered constant. This limitation is responsible for the widespread observation
that the water-specific decay rate constant of the common first-order model is not a constant
at all, but rather varies significantly with chlorine dose (a clear indication of model structure
error). The formation of regulated chlorination by-products, which result from free chlorine
and NOM interactions, presents yet another set of reaction mechanisms involving multiple
interacting species.

 Mono-, di-, and tri-chloramine result from interactions between free chlorine species and

ammonia, and are increasingly used as residual disinfectants. These chloramines also
interact with NOM, though the reactions are slower than those for free chlorine. Thus
chloramine decay in distribution systems involves multiple interacting chemical species,
which a single-species model is forced to simplify as a quasi-first order reaction. Further,
ammonia may be produced by auto-decomposition of chloramines, which is of significant
practical importance for understanding nitrification episodes in distribution systems and
storage tanks. Nitrification models may need to consider attached-growth nitrifying
biofilms, suspended nitrifying biomass, and the electron donor (ammonia), electron
acceptor (oxygen), and carbon source that supports microbial growth.

 For the relatively common situation where more than one water source supplies a

distribution system, current models are not able to represent meaningful differences in
source water quality, as they relate to water quality evolution in the distribution system.
Modelers must try to compensate for this limitation by assigning bulk decay rate
coefficients to specific pipes, according to which source supplies them. Such an approach
has obvious deficiencies when attempting to model distribution system zones where sources
blend together, and these zones are sometimes the focus of water quality issues.

 8

None of these examples can be accurately modeled by using the single-species capabilities of the
current EPANET program. This shortcoming provides the motivation to extend EPANET so that it
can model reaction systems of any level of complexity.

The following sections of this manual describe the conceptual framework used by EPANET-MSX
to model multiple reacting species within a distribution system, provide instructions on how to use
both the command line and toolkit versions of EPANET-MSX, give a complete description of the
format of an MSX input file, and describe several example applications in detail. The appendices
describe each function in the EPANET-MSX toolkit, the format of its binary output file, and the
meaning of its error codes.

 9

2. CONCEPTUAL FRAMEWORK

From a water quality modeling perspective, two significant physical phases exist within a water
distribution system: a mobile bulk water phase and a fixed pipe surface phase. Bulk phase species
are chemical or biological components that exist within the bulk water phase and are transported
through the system with the average water velocity. Surface phase species are components that are
attached or incorporated into the pipe wall and are thus rendered immobile. Figure 2-1 shows an
example of bulk phase chlorine (HOCl) reacting with bulk phase NOM (natural organic matter) to
produce a bulk phase disinfectant by-product (DBP), while also oxidizing ferrous iron to ferric iron
in the fixed surface phase at the pipe wall.

Figure 2-1 Example of reactions in the mobile bulk phase and at the fixed pipe surface phase.

Bulk Fluid

Pipe Surface

HOCl NOM DBP

Fe+2 Fe+3

Examples of bulk species include dissolved constituents (individual compounds or ions, such as
HOCl and OCl-, as well as aggregate components such as TOC), suspended constituents (such as
bacterial cells and inorganic particulates), and chemicals adsorbed onto particles. Examples of
surface species include bacteria incorporated within biofilm, oxidized forms of iron contained
within corrosion scale, particulate material that settles out due to gravity or is attached to the pipe
wall surface through ionic or molecular (i.e., van der Waal) forces, and organic compounds that can
diffuse into or out of plastic pipes or be adsorbed onto or desorbed from iron oxide pipe surfaces.
Some components, such as bacteria and particulates, can exist in both the bulk and surface phases
and transfer from one phase to another by such mechanisms as physical attachment/detachment,
chemical adsorption or molecular diffusion. In such situations, the component is modeled as two
species: one bulk and the other surface.

Additional phases that might exist within a distribution system, such as a mobile bed sediment
phase, an immobile water phase within the pore structure of pipe scale, or an air phase overlying
the water surface in a storage tank, could also be included within this modeling framework.

 10

Material Transport

A water distribution system consists of pipes, pumps, valves, fittings and storage facilities that
convey water from source points to consumers. This physical system is modeled as a network of
links connected together at nodes in some particular branched or looped arrangement. Figure 2-2
provides an example of a network representation of a very simple distribution system. Links
represent pipes, pumps, and valves; nodes serve as source points, consumption points and storage
facilities. The following phenomena all influence the quality of water contained in the system and
can be modeled using principles of conservation of mass coupled with reaction kinetics:

Figure 2-2 Node-link representation of a simple distribution system.

a. Advective transport in pipes: bulk species are transported down the length of a pipe with the

same average velocity as the carrier fluid while at the same time reacting with other bulk
species and with the pipe wall surface.

b. Mixing at pipe junctions: at junctions receiving inflow from two or more links the flows are

assumed to undergo complete and instantaneous mixing.

c. Mixing in storage nodes: all inflows to storage nodes mix completely with the existing contents

in storage while these contents are subjected to possible bulk phase reactions (alternative
schemes are available for modeling plug flow storage tanks).

Chemical Reactions

Reactions can be divided into two classes based on reaction rates. Some reactions are reversible and
fast enough in comparison with the system's other processes so that a local equilibrium can be
assumed; others are not sufficiently fast and/or irreversible and it is inappropriate to use an
equilibrium formulation to represent them. Theoretically, very large backward and forward rate
constants (with their ratio equaling the equilibrium constant) can be used to model fast/equilibrium
reactions and therefore both fast/ equilibrium and slow/kinetic reaction dynamics can be written as
a single set of ordinary differential equations (ODEs) that can be integrated over time to simulate
changes in species concentrations. This approach can result in reaction rates that may range over

 11

several orders of magnitude and lead to such small integration time steps so as to make a numerical
solution impractical.

In EPANET-MSX, algebraic equations are used to represent the fast/equilibrium reactions and
mass conservation. Thus it is assumed that all reaction dynamics can be described by a set of
differential-algebraic equations (DAEs) that is in semi-explicit format. The system of DAEs that
defines the interactions between bulk species, surface species, and parameter values can be written
in general terms as:

dxb = f(xb, xs, zb, zs, p) (1)
dt

dxs = g(xb, xs, zb, zs, p) (2)
dt

 0 = h(xb, xs, zb, zs, p) (3)

where the vectors of time-varying differential variables xb and xs are associated with the bulk water
and pipe surface, respectively, the time-varying algebraic variables zb and zs are similarly
associated, and the model parameters p are time invariant. The algebraic variables are assumed to
reach equilibrium in the system within a much smaller time scale compared to the numerical time
step used to integrate the ODEs. The dimension of the algebraic equations h must agree with that of
the algebraic variables z = [zb zs], so that the total number of equations in (1)–(3) equals the total
number of time-varying species ([xb xs zb zs]).

As a simple example of a reaction/equilibrium system modeled as a set of DAEs, consider the
oxidation of arsenite (As+3) to arsenate (As+5) by a monochloramine disinfectant residual in the
bulk flow and the subsequent adsorption of arsenate onto exposed iron on the pipe wall. (Arsenite
adsorption is not significant at the pH’s typically found in drinking water.) A more complete
explanation and extension of this model is presented in section 5 of this manual. This system
consists of four species (arsenite, arsenate, and monochloramine in the bulk flow, and sorbed
arsenate on the pipe surface). It can be modeled with three differential rate equations and one
equilibrium equation:

dAs+3

= −k As+3 ()NH Cl
dt a 2 (4)

dAs+5

= k As+3()NH Cl − A [k (S − As+5) +5
a 2 v 1 max s As − k2As+5

s] (5)
dt

()d NH2Cl
= −k ()NH Cl

dt b 2 (6)

+ k S As+5

As 5 s max
s =

1+ k 5
sAs+ , (7)

 12

where As+3 is the bulk phase concentration of arsenite, As+5 is the bulk phase concentration of
arsenate, As+5

s is surface phase concentration of arsenate, and NH2Cl is the bulk phase
concentration of monochloramine. The parameters in these equations are as follows: ka is a rate
coefficient for arsenite oxidation, kb is a monochloramine decay rate coefficient, Av is the pipe
surface area per liter pipe volume, k1 and k2 are arsenate adsorption and desorption rate
coefficients, Smax is the maximum pipe surface concentration of arsenate, and ks = k1/k2. Thus in
terms of the notation used in (1)-(3), xb = {As+3, As+5, NH Cl}, x +

s = {∅}, z 5
2 b = {∅}, zs = { Ass }, p

= {ka, kb, Av, k1, k2, Smax}. Example input files for this form of the model are included with the
standard EPANET-MSX distribution, while the input file for a more complex version of the model
is presented in section 5.

Full Network Solution

Dynamic models of water quality within water distribution systems can be classified spatially as
either Eulerian or Lagrangian. Eulerian models divide the network into a series of fixed control
elements and record the changes at the boundaries and within these elements, while Lagrangian
models track changes of discrete parcels of water as they travel through the network. EPANET-
MSX utilizes the same Lagrangian transport algorithm used by EPANET. This algorithm ignores
axial dispersion and tracks the movement and reaction of chemicals in discrete water volumes, or
segments. These segments are transported through network pipes by the bulk velocity, and
completely mix at junction nodes. This method is relatively efficient because the number and size
of the segments in a pipe can change as hydraulic conditions change.

In summary form, the following steps, depicted visually in Figure 2-3, are performed for each water
quality time step:

1. React: Apply reaction dynamics within each pipe segment and storage tank over the time
step to compute new concentrations throughout the network.

2. Advect: Within each pipe, compute the flow volume transported over the time step and

transfer this amount of volume and its associated bulk species mass from the pipe’s leading
segments into accumulated mass and volume totals at the downstream node.

3. Mix: Compute new bulk species concentrations at each node based on its accumulated mass

and volume inputs from the advection step as well as any external sources.

4. Release: Create a new segment at the upstream end of each pipe whose size equals the
pipe’s flow volume and whose bulk species concentrations equal that of the upstream node
(or if the difference in quality between the most upstream segment and the upstream node is
below some tolerance, simply increase the size of the current upstream segment).

 13

8
8 10 6 6

20 16 12

8
6 7 4 6

30 20 18

12
6 7 4 4

30 20 18

12
6 7 4 4

30 19 18

12

25

At Start of Time Step

After Reaction

After Advection and Node Mixing

After Release and Surface Re-segmentation

Figure 2-3 Illustration of the 4-step water quality transport method for pipe networks. The

upper pipe segments contain flowing water while the lower segments are the pipe
wall surface. The numbers in each segment represent hypothetical bulk and surface
species concentrations, respectively.

Reaction System Solution

The multi-species water quality algorithm modifies the React step (step 1) of the solution scheme
described above. Within each pipe segment, reaction dynamics are represented by the system of
DAEs (1)-(3). The same applies for storage tanks, except that the DAEs are modified to consider
only bulk reactions. Although not indicated, the model parameters p can possibly vary by pipe. For
the equilibrium reactions it is assumed that the Jacobian matrix of h with respect to z, ∂h/∂z, is
unique and nonsingular for all t. In this case, the implicit functions defined by equation (3),

zb = zb(xb, xs, p) (8)

zs = zs(xb, xs, p) (9)

 14

exist, are continuous and unique, and possess continuous partial derivatives. These properties, and
in particular the resultant ability to evaluate (8)-(9) (numerically), are central to the numerical
algorithms used for solution of (1)-(3).

Given the implicit functions (8)-(9), the solution of (1)-(3) is performed by substituting (8)-(9) into
(1)-(2), thus eliminating the algebraic equations (3) and leaving a reduced system of ordinary
differential equations (ODEs) that can be integrated numerically:

dx b = f(x , x , z (x , x , p), z (x , x , p), p)
d b s b b s s b st

 = f′(xb, xs, p) (10)

dxs = g(xb, xs, zb(xb, x
dt s, p), zs(xb, xs, p), p)

 = g′(xb, xs, p) (11)

Note that the above “substitution" is not performed literally, since (8)-(9) are implicit, and thus so
are the reduced trajectories f′ and g′. Solving (10)-(11) numerically with an explicit method, such as
any of the Runge-Kutta schemes, will require that f′ and g′ be evaluated at intermediate values of xb
and xs over the integration time step. Each such evaluation will in turn require a solution of the
nested set of algebraic equations (8)-(9). Alternative strategies for accomplishing these steps are
discussed in the Model Implementation section below.

In addition to the React step, evaluation of the equilibrium equations also needs to be performed at
the Mix phase of the overall algorithm since the blending together of multiple flow streams can
result in a new equilibrium condition. This process needs to be performed at each network node,
including storage tanks.

Pipe Surface Discretization

The segment bulk water state variables xb and zb have moving coordinates, due to the nature of the
Lagrangian water quality model (they move with the bulk water velocity). In contrast the associated
pipe surface variables xs and zs have fixed coordinates, since they are associated with the non-
moving pipe. The lack of a common fixed coordinate system for the bulk and surface state
variables must be reconciled, since these variables interact through the common pipe-water
interface (through equations (1)-(3)). To resolve this issue a simple mass-conserving scheme is
applied at every water quality time step to update the pipe surface elements to remain consistent
with the (advected) water quality segments and re-distribute the surface variable mass among the
updated elements.

As shown in Figure 2-3, within any single water quality time step, a moving mesh divides each
pipe surface into discrete-length elements, such that each shares a common surface/water interface
with the water quality segment above it. At the end of the time step the pipe elements will,
however, be inconsistent with the water quality segments, due to advection of the latter (i.e.,





 
 

 15

through the Advect step of the overall algorithm). This inconsistency is removed by updating the
surface species concentrations using an interfacial area-weighted average:

⎛ 1 n

x new ⎞
si = ⎜ ⎟⎜ new ⎟ ∑ ()Lnew

i ∩ L
L j xsj for i = 1, … nnew (12)

⎝ i ⎠ j=1

⎛ 1 n

z new ⎞ new
si = ⎜ ⎟

new ∑ ()Li ∩ L j zsj for i = 1, … nnew (13) ⎜ ⎟
⎝ Li ⎠ j=1

where i is the water quality segment index, n is the number of water quality segments in the pipe
during the most recent React step, Lj is the length of segment j, with corresponding vectors of
surface species xsj and zsj, nnew is the updated number of water quality segments in the pipe after
advection, L new

i is the length of each updated segment, with corresponding updated surface
concentrations x new

si and z new new
si . The quantity (Li ∩ Lj) is the length of the overlapping intersection

between segment j and updated segment i.

Model Implementation

EPANET-MSX offers several choices of numerical integration methods for solving the reaction
system’s ODEs, equations (1) and (2). These include a forward Euler method (as used in
EPANET), a fifth order Runge-Kutta method with automatic time step control (Hairer et al., 1993),
and a second order Rosenbrock method with automatic time step control (Verwer et al., 1999).
These are listed in order of the numerical work per time step required to obtain a solution. The
Euler method is best applied to non-stiff, linear reaction systems, the Runge-Kutta method to non-
stiff, nonlinear systems, and the Rosenbrock method to stiff systems (see, e.g., Golub and Van
Loan, 1992).

The algebraic equilibrium equations (3) are solved using a standard implementation of the Newton
method (Press et al., 1992). This algorithm requires that the Jacobian of h with respect to the
algebraic variables zb and zs be used to iteratively solve an approximating linear system of
equations until convergence is achieved. This can be a computationally expensive procedure since
the Jacobian must be evaluated numerically and the system (3) is being solved within every pipe
segment of every pipe at every time step, possibly several times over, as the ODEs are integrated.
To help reduce this burden EPANET-MSX offers the following options for evaluating the
nonlinear equilibrium equation system:

 The Non-Coupled option only evaluates the equilibrium equations at the end of the time step
after a new ODE solution has been found; the algebraic variables maintain the values they had
at the start of the time step while the ODEs are being numerically integrated.

 The Fully-Coupled option solves the algebraic equations at each stage of the ODE solution
process using a fresh Jacobian for each Newton step.

The choice of coupling involves a trade-off between computational effort and level of accuracy, the
degree of which will likely be very system dependent.

 16

This page intentionally blank.

 17

3. PROGRAM USAGE

EPANET-MSX is distributed in a compressed archive file named EPANETMSX.ZIP. The
contents of this archive are listed in Table 3-1. The top level archive folder contains a Readme.txt
file that describes the contents of the archive and procedures for reporting bugs.

Table 3-1 Files distributed with EPANET-MSX.

Readme.txt describes the contents of the archive

\Bin
 epanetmsx.exe
 epanetmsx.dll
 epanet2.dll

command line version of EPANET-MSX
EPANET-MSX function library
standard EPANET function library

\Examples
 example.inp
 example.msx

example EPANET input file
example MSX input file

\Doc
 epanetmsx.pdf
 license.txt

EPANET-MSX users manual
licensing agreement for using EPANET-MSX

\Include
 epanetmsx.h
 epanetmsx.bas
 epanetmsx.pas
 epanet2.h
 epanet2.bas
 epanet2.pas
 epanetmsx.lib
 epanet2.lib

C/C++ header file for EPANET-MSX toolkit
Visual Basic declarations of EPANET-MSX functions

 Delphi-Pascal declarations of EPANET-MSX functions
C/C++ header file for EPANET2 toolkit
Visual Basic declarations of EPANET2 functions
Delphi-Pascal declarations of EPANET2 functions
Microsoft C/C++ LIB file for epanetmsx.dll
Microsoft C/C++ LIB file for epanet2.dll

\Src EPANET-MSX source files

\Make files for compiling the EPANET-MSX function library and

the command line executable on both Windows and Linux
platforms.

 18

Most end users will only need to extract the files in the \bin, \examples, and \doc folders to a
directory of their choosing. Developers will also need the files in the \include folder to write
custom applications. They should also be aware of the licensing requirements set forth in the
license.txt file.

The EPANET-MSX system is supplied as both:

 a stand-alone console application (epanetmsx.exe) that can run standard water quality
analyses without any additional programming effort required,

 a function library (epanetmsx.dll) that, when used in conjunction with the original
EPANET function library (epanet2.dll), can produce customized programming
applications.

At this point in time the extension has not been integrated into the Windows version of EPANET.
This is expected to happen at some future date. Examples of each type of usage are provided below.

Regardless of which approach is used, the user must prepare two input files to run a multi-species
analysis. One of these is a standard EPANET input file that describes the hydraulic characteristics
of the network being analyzed (EPANET-MSX will ignore any water quality information that
might be in this file). The format of this file is described in the EPANET Users Manual (Rossman,
2000). Any network file that was created, edited and then exported from the Windows version of
EPANET can serve as the EPANET input file for the multi-species extension.

The second file that must be prepared is a special EPANET-MSX file that describes the species
being simulated and the chemical reaction/equilibrium model that governs their dynamics. The
format of this file is described in Section 4 of this manual.

Example Command Line Run

In order to demonstrate the use of the command line version of EPANET-MSX we will simulate
the arsenic oxidation/adsorption reaction system that was briefly described in Section 2 of this
manual using the simple pipe network shown in Figure 3-1 that was adapted from Zhang et al.
(2004). Table 3-2 lists the properties associated with the nodes of this network while Table 3-3
does the same for the pipe links.

 19

Figure 3-1 Schematic of the example pipe network.

Table 3-2 Nodal properties of the example pipe network.

Node Elevation, (m) Demand (m3/hr)
Source 100 --
A 0 4.1
B 0 3.4
C 0 5.5
D 0 2.3

Table 3-3 Pipe properties of the example pipe network.

Pipe Length (m) Diameter (mm) C-Factor
1 1000 200 100
2 800 150 100
3 1200 200 100
4 1000 150 100
5 2000 150 100

The first step in running a multi-species analysis of a water distribution system is to prepare a
standard EPANET input file of the system that contains all of the information needed to perform a
hydraulic analysis of the system. The Windows version of EPANET 2 was used to draw the
network layout and assign node and pipe attributes using the program’s graphical editing tools. A
standard .INP file was then created by issuing the File | Export | Network command. The resulting
file was named example.inp and is shown in Figure 3-2 (after some editing was performed to
remove empty sections and default options). Note that for this simple application the water
demands remain constant over time and that a 48 hour simulation period is requested.

 20

Figure 3-2 Contents of the example.inp input file.

[TITLE]
EPANET-MSX Example Network

[JUNCTIONS]
;ID Elev Demand Pattern
 A 0 4.1
 B 0 3.4
 C 0 5.5
 D 0 2.3

[RESERVOIRS]
;ID Head Pattern
 Source 100

[PIPES]
;ID Node1 Node2 Length Diameter Roughness
 1 Source A 1000 200 100
 2 A B 800 150 100
 3 A C 1200 200 100
 4 B C 1000 150 100
 5 C D 2000 150 100

[TIMES]
 Duration 48
 Hydraulic Timestep 1:00
 Quality Timestep 0:05
 Report Timestep 2
 Report Start 0
 Statistic NONE

[OPTIONS]
 Units CMH
 Headloss H-W
 Quality NONE

The next step is to prepare the MSX input file that defines the individual water quality species of
interest and the reaction expressions that govern their dynamics. This was done using a text editor,
following the format described in Section 4 of this manual. The resulting MSX input file, named
example.msx, is shown in Figure 3-3.

 21

Figure 3-3 Contents of the example.msx input file (Continued on next page)

[TITLE]
Arsenic Oxidation/Adsorption Example

[OPTIONS]
 AREA_UNITS M2 ;Surface concentration is mass/m2
 RATE_UNITS HR ;Reaction rates are concentration/hour
 SOLVER RK5 ;5-th order Runge-Kutta integrator
 TIMESTEP 360 ;360 sec (6 min) solution time step
 RTOL 0.001 ;Relative concentration tolerance
 ATOL 0.0001 ;Absolute concentration tolerance

[SPECIES]
 BULK AS3 UG ;Dissolved arsenite
 BULK AS5 UG ;Dissolved arsenate
 BULK AStot UG ;Total dissolved arsenic
 WALL AS5s UG ;Adsorbed arsenate
 BULK NH2CL MG ;Monochloramine

[COEFFICIENTS]
 CONSTANT Ka 10.0 ;Arsenite oxidation rate coefficient
 CONSTANT Kb 0.1 ;Monochloramine decay rate coefficient
 CONSTANT K1 5.0 ;Arsenate adsorption coefficient
 CONSTANT K2 1.0 ;Arsenate desorption coefficient
 CONSTANT Smax 50 ;Arsenate adsorption saturation limit

[TERMS]
 Ks K1/K2 ;Equil. adsorption coeff.

[PIPES]
 ;Arsenite oxidation
 RATE AS3 -Ka*AS3*NH2CL
 ;Arsenate production
 RATE AS5 Ka*AS3*NH2CL - Av*(K1*(Smax-AS5s)*AS5 - K2*AS5s)
 ;Monochloramine decay
 RATE NH2CL –Kb*NH2CL
 ;Arsenate adsorption
 EQUIL AS5s Ks*Smax*AS5/(1+Ks*AS5) – AS5s
 ;Total bulk arsenic
 FORMULA AStot AS3 + AS5

[TANKS]
 RATE AS3 -Ka*AS3*NH2CL
 RATE AS5 Ka*AS3*NH2CL
 RATE NH2CL -Kb*NH2CL
 FORMULA AStot AS3 + AS5

[QUALITY]
 ;Initial conditions (= 0 if not specified here)
 NODE Source AS3 10.0
 NODE Source NH2CL 2.5

 22

[REPORT]
 NODES C D ;Report results for nodes C and D
 LINKS 5 ;Report results for pipe 5
 SPECIES AStot YES ;Report results for each species
 SPECIES AS5 YES
 SPECIES AS5s YES
 SPECIES NH2CL YES

Figure 3-3 (Continued)

1. The species have been named as follows:
 AS3 is dissolved arsenite (As+3), expressed in μg/L
 AS5 is dissolved arsenate (As+5), expressed in μg/L
 AStot is total dissolved arsenic expressed in μg/L
 AS5s is adsorbed arsenate, expressed in μg/m2
 NH2CL is dissolved monochloramine, expressed in mg/L

2. The reaction rate coefficients, Ka and Kb, and the adsorption coefficients, K1, K2, and
Smax, have been designated as constants. If instead they varied by pipe, then they could
have been declared as parameters and their values could have been adjusted on a pipe-
specific basis in the [PARAMETERS] section of the file. Note that the units of these
coefficients are as follows: (L/mg-hr) for Ka; (1/hr) for Kb, (L/μg-hr) for K1; (1/hr) for K2;
μg/m2 for Smax.

3. The [PIPES] section supplies the three reaction rate expressions and the single equilibrium
expression for this system as was presented previously in equations (4) - (7) of Section 2.
For example, the rate expression for arsenite oxidation

dAs+3

= −k As+3 ()NH Cl
dt a 2

is expressed in the file as:
 RATE As3 -Ka*As3*NH2CL

while the equilibrium expression

There are several things of note in this file:

+5

As+5 k sS As
s = max

1+ k As+5
s

is re-written so that it has an implied 0 on the left hand side:
 EQUIL As5s Ks*Smax*As5/(1+Ks*As5) – As5s

4. The variable Av that appears in the rate expression for AS5 is a reserved symbol for the
pipe wall surface area per unit of pipe volume. It is computed internally by EPANET-MSX
and has units of area per liter, where the area units are the same as those specified in the
[OPTIONS] section of the file.

 23

5. Even though there are no tanks in this example, a [TANKS] section is still needed in the
MSX file because both BULK and WALL species have been defined (Tank water quality
reactions can not use wall species, which are associated only with pipes). If only BULK
species were present then a redundant [TANKS] section would not be required.

6. An initial quality is assigned to the source reservoir which remains constant over the course
of the simulation. If source quality was to vary over time or there were source injections at
other locations they could be described in a [SOURCES] section.

7. In the [REPORT] section we ask that results for all species at nodes C and D and link 5 be
written to the report file.

The final step in analyzing arsenic oxidation/adsorption for our example network is to run the
EPANET-MSX command line executable. This can be done by first opening a Command Prompt
window in Windows, navigating to the folder where epanetmsx.exe and the input files were saved,
and issuing the following command:

 epanetmsx example.inp example.msx example.rpt

where example.rpt is the name of the file where the results will be written. If the executable were
saved to a different folder than that of the example files, then either the full path name would have
to be added to the name of the executable on the command line or the folder name would have to be
added to the user’s PATH environment variable. Figure 3-4 is a screen capture of what appears on
the screen as the program runs.

Figure 3-4 Command line execution of EPANET-MSX.

 24

After the program finishes, the example.rpt file can be opened in any text editor (such as Windows
Notepad) where its contents can be viewed. Excerpts from the results file are reproduced in Figure
3-5. The first page contains a summary of the standard EPANET options that were chosen for the
run. Following this is a table of results for each node and each link. These tables contain the
concentrations of each species at each reporting period. Note that the surface species are not listed
for nodes since by definition this class of constituent is associated only with pipe surfaces.

Figure 3-5 EPANET-MSX results for the example network (continued on next page).

 Page 1 Fri Feb 02 10:00:34 2007

 **
 * E P A N E T *
 *
 *
 *

Hydraulic and Water Quality
Analysis for Pipe Networks

Version 2.0

*
*
*

 **

 EPANET-MSX Example Network

 Input Data File example.inp
 Number of Junctions................ 4
 Number of Reservoirs............... 1
 Number of Tanks 0
 Number of Pipes 5
 Number of Pumps 0
 Number of Valves 0
 Headloss Formula Hazen-Williams
 Hydraulic Timestep 1.00 hrs
 Hydraulic Accuracy 0.001000
 Maximum Trials 40
 Quality Analysis None
 Specific Gravity 1.00
 Relative Kinematic Viscosity 1.00
 Relative Chemical Diffusivity 1.00
 Demand Multiplier 1.00
 Total Duration 48.00 hrs
 Reporting Criteria:
 No Nodes
 No Links

 Analysis begun Fri Feb 02 10:00:34 2007

 Processing MSX input file example.msx

 25

Figure 3-5 Continued.

Page 1 EPANET-MSX 1.0

 **
 * E P A N E T - M S X *
 * Multi-Species Water Quality *
 * Analysis for Pipe Networks *
 * Version 1.0 *
 **

 Arsenic Oxidation/Adsorption Example

 <<< Node C >>>

 Time AS5 AStot NH2CL
 hr:min UG/L UG/L MG/L
 ------- ---------- ---------- ----------
 0:00 0.00 0.00 0.00
 2:00 0.00 0.00 0.00
 4:00 0.00 0.00 0.00
 6:00 0.00 0.00 0.00
 8:00 0.00 0.00 1.10
 10:00 9.17 9.17 1.10
 12:00 9.17 9.17 1.10
 14:00 9.17 9.17 1.10
 16:00 9.17 9.17 1.10
 18:00 9.17 9.17 1.10
 20:00 9.17 9.17 1.10
 22:00 9.17 9.17 1.10
 24:00 9.17 9.17 1.10
 26:00 9.17 9.17 1.10
 28:00 9.17 9.17 1.10
 30:00 9.17 9.17 1.10
 32:00 9.17 9.17 1.10
 34:00 9.17 9.17 1.11
 36:00 9.17 9.17 1.11
 38:00 10.03 10.03 1.11
 40:00 10.03 10.03 1.11
 42:00 10.03 10.03 1.11
 44:00 10.03 10.03 1.11
 46:00 10.03 10.03 1.11
 48:00 10.03 10.03 1.11

 <<< Node D >>>

 Time AS5 AStot NH2CL
 hr:min UG/L UG/L MG/L
 ------- ---------- ---------- ----------
 0:00 0.00 0.00 0.00
<Remaining entries not shown>

 26

Figure 3-5 Continued.

 <<< Link 5 >>>

 Time AS5 AStot AS5s NH2CL
 hr:min UG/L UG/L UG/M2 MG/L
 ------- ---------- ---------- ---------- ----------
 0:00 0.00 0.00 0.00 0.00
 2:00 0.00 0.00 0.00 0.00
 4:00 0.00 0.00 0.00 0.00
 6:00 0.00 0.00 0.00 0.00
 8:00 0.00 0.00 0.00 0.05
 10:00 0.85 0.85 4.51 0.17
 12:00 1.86 1.86 9.88 0.27
 14:00 2.87 2.87 15.27 0.35
 16:00 3.87 3.87 20.64 0.42
 18:00 4.88 4.88 26.02 0.47
 20:00 5.89 5.89 31.39 0.52
 22:00 6.89 6.89 36.75 0.55
 24:00 7.90 7.90 42.12 0.56
 26:00 8.91 8.91 47.50 0.56
 28:00 9.17 9.17 48.93 0.56
 30:00 9.17 9.17 48.93 0.56
 32:00 9.17 9.17 48.93 0.56
 34:00 9.17 9.17 48.93 0.56
 36:00 9.17 9.17 48.93 0.57
 38:00 9.19 9.19 48.93 0.57
 40:00 9.30 9.30 48.95 0.57
 42:00 9.41 9.41 48.96 0.57
 44:00 9.52 9.52 48.97 0.57
 46:00 9.64 9.64 48.98 0.57
 48:00 9.75 9.75 48.99 0.57

 Analysis ended Sat Jul 14 15:24:38 2007

Example Toolkit Usage

Using the EPANET-MSX function library requires some programming effort to build custom
applications and must be used in conjunction with the standard EPANET Programmer’s Toolkit.
Applications can be written in any programming language that can call external functions residing
in a Windows DLL (or a Linux shared object library), such as C, C++, Visual Basic, and Delphi
Pascal. Appendix A describes each function included in the MSX toolkit library. The functions in
the EPANET toolkit library are described in the Help file distributed with that toolkit (available at
 www.epa.gov/ORD/NRMRL/wswrd/epanet.html).

As an example of how the library can be used to construct an application, Figure 3-6 displays the C
code behind the command line implementation of the MSX system, epanetmsx.exe, which
was just discussed. The listing begins by checking for the correct number of command line
arguments and then attempts to open and read the EPANET file supplied as the first argument. It
uses the EPANET toolkit function ENopen for this purpose.

 27

The code then begins a do-while loop that simplifies error detection through the remainder of
the program. The MSXopen function is used to open and process the MSX file (the second
command line argument), and the MSXsolveH function is used to run a hydraulic analysis of the
network whose results are saved to a scratch file. This is followed by a call to MSXinit to
initialize the water quality analysis. Note that the argument of 1 to this function tells the MSX
system to save its computed water quality results to a scratch file so that they can be used for
reporting purposes later on.

The program then begins another do-while loop that will step through each water quality time step.
At each such step, the MSXstep function is called to update water quality throughout the network
and save these results to the scratch output file. This function also updates the amount of time left
in the simulation (stored in the variable named tleft). The loop continues until either no more
time is left or an error condition is encountered.

If the simulation ends successfully, the MSXreport function is called to write the water quality
results to the report file that was named on the command line. If a fourth file name was supplied on
the command line, then the MSXsaveoutfile is called to save the results in a binary format to
this file. Lastly, the MSX system is closed down by calling MSXclose and the same is done for
the EPANET system by calling ENclose.

If the source code in Figure 3-6 was saved to a file named msxepanet.c then it could be
compiled into an executable named epanetmsx.exe by using the following commands with the
Microsoft C/C++ command line compiler:

CL /c epanetmsx.c
LINK epanetmsx.obj epanet2.lib epanetmsx.lib /OUT:epanetmsx.exe

Note that when developing MSX applications in C/C++, the library modules epanet2.lib and
epanetmsx.lib must be linked in with the application’s object modules. Versions of these files that
are compatible with the Microsoft C/C++ compiler (Version 6 and higher) are supplied with the
EPANET-MSX distribution. Also, copies of the distributed DLL files epanet2.dll and
epanetmsx.dll must be placed in the same directory as the application’s executable file or reside in
a directory listed the user’s PATH environment variable.

Users using other compilers or platforms would need to use the appropriate commands to produce
the required object library files and executables.

 28

Figure 3-6 C source code for the command line version of EPANET-MSX.

// EPANETMSX.C -- Command line implementation of EPANET-MSX

#include <stdlib.h>
#include <stdio.h>
#include "epanet2.h" // EPANET toolkit header file
#include "epanetmsx.h" // EPANET-MSX toolkit header file

int main(int argc, char *argv[])
/*
** Purpose:
** runs a multi-species EPANET analysis
**
** Input:
** argc = number of command line arguments
** argv = array of command line arguments.
**
** Returns:
** an error code (or 0 for no error).
**
** Notes:
** The command line arguments are:
** - the name of a regular EPANET input data file
** - the name of a EPANET-MSX input file
** - the name of a report file that will contain status
** messages and output results
** - optionally, the name of an output file that will
** contain water quality results in binary format.
*/
{
 int err, done = 1;
 long t, tleft;
 long oldHour, newHour;

// --- Check command line arguments

 if (argc < 4) {
 printf("\n Too few command line arguments.\n");
 return 0;
 }
// --- Open the EPANET file

 printf("\n... EPANET-MSX Version 1.0\n");
 printf("\n o Processing EPANET input file");
 err = ENopen(argv[1], argv[3], "");
 if (err) {
 printf("\n\n... Cannot read EPANET file; error code = %d\n", err);
 ENclose();
 return 0;
 }

 29

Figure 3-6 Continued.

// --- Begin an error detection loop

 do {

 // --- Open the MSX input file

 printf("\n o Processing MSX input file");
 err = MSXopen(argv[2]);
 if (err) {
 printf("\n\n... Cannot read MSX file; error code = %d\n", err);
 break;
 }

 // --- Solve hydraulics

 printf("\n o Computing network hydraulics");
 err = MSXsolveH();
 if (err) {
 printf(
 "\n\n... Cannot obtain network hydraulics; error code = %d\n", err);
 break;
 }

 // --- Initialize the multi-species analysis

 printf("\n o Initializing network water quality");
 err = MSXinit(1);
 if (err) {
 printf(
 "\n\n... Cannot initialize EPANET-MSX; error code = %d\n", err);
 break;
 }
 t = 0;
 oldHour = -1;
 newHour = 0;
 printf("\n");

 // --- Repeat for each time step

 do {

 // --- Report current progress
 if (oldHour != newHour) {
 printf("\r o Computing water quality at hour %-4d", newHour);
 oldHour = newHour;
 }

 // --- Compute water quality
 err = MSXstep(&t, &tleft);
 newHour = t / 3600;

 } while (!err && tleft > 0);

 30

Figure 3-6 Continued.

 // --- Report any runtime error

 if (err) {
 printf("\n\n... EPANET-MSX runtime error; error code = %d\n", err);
 break;
 }
 else
 printf("\r o Computing water quality at hour %-4d", t/3600);

 // --- Report results

 printf("\n o Reporting water quality results");
 err = MSXreport();
 if (err) {
 printf(
 "\n\n... MSX report writer error; error code = %d\n", err);
 break;
 }

 // --- Save results to binary file if a file name was provided

 if (argc >= 5) {
 err = MSXsaveoutfile(argv[4]);
 if (err > 0) {
 printf(
 "\n\n... Cannot save MSX results file; error code = %d\n", err);
 break;
 }
 }

// --- End of error detection loop

 } while(!done);

// --- Close both the multi-species & EPANET systems

 MSXclose();
 ENclose();
 if (!err) printf("\n\n... EPANET-MSX completed successfully.");
 printf("\n");
 return err;
}

 31

4. INPUT FILE FORMAT

The input file used by EPANET-MSX to describe the species and reaction system being modeled is
organized into sections, where each section begins with a keyword enclosed in brackets. The
various section keywords are listed in Table 4-1. Figure 4-1 contains a template of what the input
file layout looks like.

Table 4-1 EPANET-MSX input file section keywords.
[TITLE] adds a descriptive title to the data set
[OPTIONS] sets the values of computational options
[SPECIES] names the chemical species being analyzed
[COEFFICIENTS] names the parameters and constants used in chemical rate and

equilibrium expressions
[TERMS] defines intermediate terms used in chemical rate and equilibrium

expressions
[PIPES] supplies the rate and equilibrium expressions that govern species

dynamics in pipes
[TANKS] supplies the rate and equilibrium expressions that govern species

dynamics in storage tanks
[SOURCES] identifies input sources (i.e., boundary conditions) for selected species
[QUALITY] supplies initial conditions for selected species throughout the network
[PARAMETERS] allows parameter values to be assigned on a pipe by pipe basis
[PATTERNS] defines time patterns used with input sources
[REPORT] specifies reporting options

Each section can contain any number of lines of data and appear in any order. Blank lines can
appear anywhere in the file and the semicolon (;) can be used to indicate what follows on the line is
a comment, not data. A maximum of 1024 characters can appear on a line. The ID labels used to
identify objects can be any combination of characters and numbers that do not contain square
brackets ([]), double quotes or a semicolon.

On the pages that follow the contents and formats of each input file section are described in the
order shown above. Reserved keywords are shown in bold and option choices are separated by
slashes.

 32

Figure 4-1 EPANET-MSX input file template.

[TITLE]
 <title line>

[OPTIONS]
 AREA_UNITS FT2/M2/CM2
 TIME_UNITS SEC/MIN/HR/DAY
 SOLVER EUL/RK5/ROS2
 COUPLING FULL/NONE
 TIMESTEP <seconds>
 ATOL <value>
 RTOL <value>

[SPECIES]
 BULK <specieID> <units>
 WALL <specieID> <units>

(<atol> <rtol>)
(<atol> <rtol>)

[COEFFICIENTS]
 PARAMETER <paramID> <value>
 CONSTANT <constID> <value>

[TERMS]
 <termID> <expression>

[PIPES] or [TANKS]
 EQUIL <specieID> <expression>
 RATE <specieID> <expression>
 FORMULA <specieID> <expression>

[SOURCES]
 <type> <nodeID> <specieID> <strength> (<patternID>)

[QUALITY]
 GLOBAL <specieID> <value>
 NODE <nodeID> <bulkSpecieID> <value>
 LINK <linkID> <wallSpecieID> <value>

[PARAMETERS]
 PIPE <pipeID> <paramID> <value>
 TANK <tankID> <paramID> <value>

[PATTERNS]
 <patternID> <multiplier> <multiplier> ...

[REPORT]
 NODES ALL
 NODES <node1ID> <node2ID> ...
 LINKS ALL
 LINKS <link1ID> <link2ID> ...
 SPECIES
 FILE

 <speciesID>
 <filename>

YES/NO (<precision>)

 PAGESIZE <lines>

 33

[TITLE]

Purpose:
Attaches a descriptive title to the problem being analyzed.

Format:
A single line of text.

Remarks:
The [TITLE] section is optional.

 34

[OPTIONS]

Purpose:
Defines various simulation options.

Formats:
AREA_UNITS FT2/M2/CM2

TIME_UNITS SEC/MIN/HR/DAY

SOLVER EUL/RK5/ROS2

COUPLING FULL/NONE

TIMESTEP seconds

ATOL value

RTOL value

Definitions:

AREA_UNITS sets the units used to express pipe wall surface area where:
 FT2 = square feet
 M2 = square meters
 CM2 = square centimeters
The default is FT2.

TIME_UNITS is the units in which all reaction rate terms are expressed. The default units are
hours (HR).

SOLVER is the choice of numerical integration method used to solve the reaction system where
 EUL = standard Euler integrator
 RK5 = Runge-Kutta 5th order integrator
 ROS2 = 2nd order Rosenbrock integrator.
The default solver is EUL.

COUPLING determines to what degree the solution of any algebraic equilibrium equations is
coupled to the integration of the reaction rate equations. If coupling is NONE then the solution to the
algebraic equations is only updated at the end of each integration time step. With FULL coupling
the updating is done whenever a new set of values for the rate-dependent variables in the reaction
rate expressions is computed. This can occur at several intermediate times during the normal
integration time step when using the RK5 and ROS2 integration methods. Thus the FULL coupling
option is more accurate, but can require significantly more computation time. The default is FULL
coupling.

 35

TIMESTEP is the time step, in seconds, used to integrate the reaction system. The default time
step is 300 seconds (5 minutes).

ATOL is the default absolute tolerance used to determine when two concentration levels of a
species are the same. It applies to all species included in the model. Different values for
individual species can be set in the [SPECIES] section of the input (see below). If no ATOL
option is specified then it defaults to 0.01 (regardless of species concentration units).

RTOL is a default relative accuracy level on a species’ concentration used to adjust time steps in
the RK5 and ROS2 integration methods. It applies to all species included in the model.
Different values for individual species can be set in the [SPECIES] section of the input (see
below). If no RTOL option is specified then it defaults to 0.001.

 36

[SPECIES]

Purpose:
Defines each chemical species being simulated.

Formats:
BULK name units (Atol Rtol)
WALL name units (Atol Rtol)

Definitions:

name species name

units species mass units

Atol optional absolute tolerance that overrides the global value set in the [OPTIONS]
section

Rtol optional relative tolerance that overrides the global value set in the [OPTIONS]
section

Remarks:
 The first format is used to define a bulk water (i.e., dissolved) species while the second is

used for species attached (i.e., adsorbed) to the pipe wall.

 Bulk species are measured in concentration units of mass units per liter while wall species
are measured in mass units per unit area.

 Any units can be used to represent species mass. The user is responsible for including any
necessary unit conversion factors when specifying chemical reaction and equilibrium
expressions that involve several species with different mass units.

 Values for both Atol and Rtol must be provided to override the default tolerances.

Examples:
[SPECIES]

 ;Bulk chlorine in mg/L with default tolerances
 BULK CL2 MG

 ;Bulk biomass in ug/L with specific tolerances
 BULK Xb UG 0.0001 0.01

 ;Attached biomass in ug/area with specific tolerances
 WALL Xa UG 0.0001 0.01

 37

[COEFFICIENTS]

Purpose:
Defines parameters and constants that are used in the reaction/equilibrium chemistry model.

Formats:
PARAMETER name value
CONSTANT name value

Definitions:

name coefficient’s identifying name

value global value of the coefficient.

Remarks:

A PARAMETER is a coefficient whose value can be changed on a pipe by pipe (or tank by tank)
basis (see the [PARAMETERS] section below) while a CONSTANT coefficient maintains the
same value throughout the pipe network.

Examples:
[COEFFICIENTS]
;Kb can vary by pipe
PARAMETER Kb 0.1

;Kw is fixed for all pipes
CONSTANT Kw 1.5

 38

[TERMS]

Purpose:
Defines mathematical expressions that are used as intermediate terms in the expressions for the
chemical reaction/equilibrium model.

Formats:
termID expression

Definitions:

termID identifying name given to the term

expression any well-formed mathematical expression involving species, parameters,
constants, hydraulic variables or other terms.

Remarks:
Terms can be used to simplify reaction rate or equilibrium expressions that would otherwise be
unwieldy to write all on one line or have the same terms repeated in several different
rate/equilibrium equations. The definition and use of TERMS, when those terms are common
and appear in multiple rate or equilibrium expressions, may speed computation because the
common term expression requires only one evaluation.

Hydraulic variables consist of the following reserved names:

D pipe diameter (feet or meters)
Kc pipe roughness coefficient (unitless for Hazen-Williams or Chezy-Manning head

loss formulas, millifeet or millimeters for Darcy-Weisbach head loss formula)
Q pipe flow rate (flow units)
U pipe flow velocity (ft/sec or m/sec)
Re flow Reynolds number
Us pipe shear velocity (ft/sec or m/sec)
Ff Darcy-Weisbach friction factor
Av Surface area per unit volume (area units/L)

Examples:
[TERMS]
;A mass transfer coefficient
Kf 1.2e-4*Re^0.88/D

;A reaction term
a1 k1*HOCL*NH3

 39

[PIPES]

Purpose:
Supplies the rate and equilibrium expressions that govern species dynamics in pipes.

Formats:
EQUIL specieID expression

RATE specieID expression
FORMULA specieID expression

Definitions:

specieID a species identifier

expression any well-formed mathematical expression involving species, parameters,
constants, hydraulic variables or terms.

Remarks:
 There should be one expression supplied for each species defined in the model.

 The allowable hydraulic variables were defined above in the description of the [TERMS]
section.

 The EQUIL format is used for equilibrium expressions where it is assumed that the
expression supplied is being equated to zero. Thus formally there is no need to supply the
name of a species, but requiring one encourages the user to make sure that all species are
accounted for.

 The RATE format is used to supply the equation that expresses the rate of change of the
given species with respect to time as a function of the other species in the model.

 The FORMULA format is used when the concentration of the named species is a simple
function of the remaining species.

Examples:
[PIPES]
;Bulk chlorine decay
RATE CL2 -Kb*CL2

;Adsorption equilibrium between Cb in bulk and Cw on wall
EQUIL Cw Cmax*k*Cb / (1 + k*Cb) – Cw

;Conversion between biomass (X) and cell numbers (N)
FORMULA N log10(X*1.0e6)

 40

;Bulk C formation plus non-equilibrium sorption between C and Cs
;Using hydraulic variable Av [Area-Units/Liter]
RATE C K*C – Av*(K1*(Smax-Cs)*C – K2*Cs)

;Equivalent sorption model, using 1/hydraulic radius = 4/D
;Assumes area units are FT2 and diameter in FT
;CFPL is TERM equal to FT3/Liter, thus (4*CFPL/D) == Av
RATE C K*C – (4*CFPL/D)*(K1*(Smax-Cs)*C – K2*Cs)

 41

[TANKS]

Purpose:
Supplies the rate and equilibrium expressions that govern species dynamics in storage tanks.

Formats:
EQUIL specieID expression
RATE specieID expression
FORMULA specieID expression

Definitions:

specieID a species identifier

expression any well-formed mathematical expression involving species, parameters,
constants, or terms.

Remarks:

 A [TANKS] section is always required when a model contains both bulk and wall species,
even when there are no tanks in the pipe network. If the model contains only bulk species,
then this section can be omitted if the reaction expressions within tanks are the same as
within pipes.

 There should be one expression supplied for each bulk species defined in the model. By
definition, wall species do not exist within tanks.

 Hydraulic variables are associated only with pipes and cannot appear in tank expressions.

 The EQUIL format is used for equilibrium expressions where it is assumed that the
expression supplied is being equated to zero. Thus, formally, there is no need to supply the
name of a species but doing so allows one to make sure that all species are accounted for.

 The RATE format is used to supply the equation that expresses the rate of change of the
given species with respect to time as a function of the other species in the model.

 The FORMULA format is used when the concentration of the named species is a simple
function of the remaining species.

Examples:

See the examples listed for the [PIPES] section.

 42

[SOURCES]

Purpose:
Defines the locations where external sources of particular species enter the pipe network.

Formats:
sourceType nodeID specieID strength (patternID)

Definitions:

sourceType either MASS, CONCEN, FLOWPACED, or SETPOINT

nodeID the ID label of the network node where the source is located

specieID a bulk species identifier

strength the baseline mass inflow rate (mass/minute) for MASS sources or
concentration (mass/L) for all other source types

patternID the name of an optional time pattern that is used to vary the source strength
over time.

Remarks:
 Use one line for each species that has non-zero source strength.

 Only bulk species can enter the pipe network, not wall species.

 The definitions of the different source types conform to those used in the original EPANET
program are as follows:

o A MASS type source adds a specific mass of species per unit of time to the total flow
entering the source node from all connecting pipes.

o A CONCEN type source sets the concentration of the species in any external source
inflow (i.e., a negative demand) entering the node. The external inflow must be
established as part of the hydraulic specification of the network model.

o A FLOWPACED type source adds a specific concentration to the concentration that
results when all inflows to the source node from its connecting pipes are mixed
together.

o A SETPOINT type source fixes the concentration leaving the source node to a
specific level as long as the mixture concentration of flows from all connecting
pipes entering the node is less than the set point concentration.

 If a time pattern is supplied for the source, it must be one defined in the [PATTERNS]
section of the MSX file, not a pattern from the associated EPANET input file.

 43

Examples:
[SOURCES]

;Inject 6.5 mg/minute of chemical X into Node N1
;over the period of time defined by pattern PAT1
MASS N1 X 6.5 PAT1

;Maintain a 1.0 mg/L level of chlorine at node N100
SETPOINT N100 CL2 1.0

 44

[QUALITY]

Purpose:
Specifies the initial concentrations of species throughout the pipe network.

Formats:
GLOBAL specieID concen
NODE nodeID specieID concen
LINK linkID specieID concen

Definitions:

specieID a species identifier

nodeID a network node ID label

linkID a network link ID label

concen a species concentration

Remarks:
 Use as many lines as necessary to define a network’s initial condition.

 Use the GLOBAL format to set the same initial concentration at all nodes (for bulk species)
or within all pipes (for wall species).

 Use the NODE format to set an initial concentration of a bulk species at a particular node.

 Use the LINK format to set an initial concentration of a wall species within a particular
pipe.

 The initial concentration of a bulk species within a pipe is assumed equal to the initial
concentration at the downstream node of the pipe.

 All initial concentrations are assumed to be zero unless otherwise specified in this section.

 Models with equilibrium equations will require that reasonable initial conditions be set so
that the equations are solvable. For example, if they contain a ratio of species concentrations
then a divide by zero condition will occur if all initial concentrations are set to zero.

 45

Examples:
[QUALITY]
;Set concentration of bulk species Cb to 1.0 at all nodes
GLOBAL Cb 1.0

;Override above condition for node N100
NODE N100 Cb 0.5

 46

[PARAMETERS]

Purpose:
Defines values for specific reaction rate parameters on a pipe by pipe or tank by tank basis.

Formats:
PIPE pipeID paramID value

TANK tankID paramID value

Definitions:

pipeID the ID label of a pipe link in the network

tankID the ID label of a tank node in the network

paramID the name of one of the reaction rate parameters listed in the
[COEFFICIENTS] section

value the parameter’s value used for the specified pipe or tank.

Remarks:
 Use one line for each pipe or tank whose parameter value is different than the global value.

 47

[PATTERNS]

Purpose:
Defines time patterns used to vary external source strength over time.

Formats:
name multiplier multiplier ...

Definitions:

name an identifier assigned to the time pattern

multiplier a multiplier used to adjust a baseline value

Remarks:
 Use one or more lines for each time pattern included in the model.

 If extending the list of multipliers to another line remember to begin the line with the
pattern name.

 All patterns share the same time period interval as defined in the [TIMES] section of the
EPANET input file being used in conjunction with the EPANET-MSX input file.

 Each pattern can have a different number of time periods.

 When the simulation time exceeds the pattern length the pattern wraps around to its first
period.

Examples:
[PATTERNS]
;A 3-hour injection pattern over a 24 hour period
;(assuming a 1-hour pattern time interval is in use)
P1 0.0 0.0 0.0 0.0 1.0 1.0
P1 1.0 0.0 0.0 0.0 0.0 0.0
P1 0.0 0.0 0.0 0.0 0.0 0.0
P1 0.0 0.0 0.0 0.0 0.0 0.0

 48

[REPORT]

Purpose:
Describes the contents of the output report produced from a simulation.

Formats:
NODES ALL

NODES node1 node2 ...

LINKS ALL

LINKS link1 link2 ...

SPECIES speciesID YES/NO (precision)

FILE filename

PAGESIZE lines

Definitions:
node1,
node2, etc. a list of nodes whose results are to be reported
link1,
link2, etc. a list of links whose results are to be reported

specieID the name of a species to be reported on

precision number of decimal places used to report a species’ concentration

filename the name of a file to which the report will be written

lines the number of lines per page to use in the report.

Remarks:

 Use as many NODES and LINKS lines as it takes to specify which locations get reported.
The default is not to report results for any nodes or links.

 Use the SPECIES line to specify which species get reported and at what precision. The
default is to report all species at two decimal places of precision.

 The FILE line is used to have the report written to a specific file. If not provided the report
will be written to the same file used for reporting program errors and simulation status.

 49

Examples:
[REPORT]
;Write results for all species at all nodes and links
;at all time periods to a specific file
NODES ALL
LINKS ALL
FILE “c:\my files\epanet-msx\myreport.txt”

[REPORT]
;Write nodal results for species S1 and S2 using
;4 decimal places to the standard EPANET report file
SPECIES S1 YES 4
SPECIES S2 YES 4
NODES ALL

 50

This page intentionally blank.

 51

5. EXAMPLE REACTION SYSTEMS

This section demonstrates how several different multi-species reaction systems of interest can be
modeled with EPANET-MSX.

Multi-Source Chlorine Decay

Multi-source networks present problems when modeling a single species, such as free chlorine,
when the decay rates observed in the source waters vary quite significantly. As the sources blend
differently throughout the network it becomes difficult to assign a single decay coefficient that
accurately reflects the decay rate observed in the blended water. Consider the distribution system
shown in Figure 5-1 that is served by two different sources. The network has been color-coded to
show the average fraction of water in each pipe that originates from the River (Source 1).

LAKE
RIVER

TRACE River

20.00

40.00

60.00

80.00

percent

Figure 5-1 Example of a two-source water distribution system showing the average percent of

water originating from the River source.

Assume that free chlorine reacts in the bulk flow along a pipe according to the following first-order
rate expression:

 dC
= −kC

dt

 52

where C is the concentration of free chlorine at time t and k is a reaction rate constant. Now
suppose that when analyzed separately in bottle tests, water from Source 1 has a k = 1.3 days-1
while Source 2’s water has k = 17.7 days-1. The issue becomes one of determining a k-value for
each pipe of the network that will reflect the proper reactivity of the blended water from both
sources.

One approach to reconciling the vastly different chlorine decay constants in this example, without
introducing a more complex chlorine decay mechanism that attempts to represent the different
reactivity of the total organics from the two sources, is to assume that at any time the chlorine
decay constant within a pipe is given by a weighted average of the two source values, where the
weights are the fraction of each source water present in the pipe. These fractions can be deduced by
introducing a fictitious conservative tracer compound at Source 1, denoted as T1, whose
concentration is fixed at a constant 1.0 mg/L. Then at any point in the network the fraction of water
from Source 1 would be the concentration of T1 while the fraction from Source 2 would be 1.0
minus that value. The resulting chlorine decay model now consists of two-species -- a tracer
species T1 and a free chlorine species C. The first-order decay constant k for any pipe in the
system would be given by:

)k = 1.3 T1+17.7 (1.0 − T1 (14)

while the system reaction dynamics would be expressed by:

dT1
= 0 (15)

dt

dC
= −()1.3T1+17.7 ()1.0 − T1 C (16)

dt

Figure 5-2 is the MSX input file that defines this model for a network where the two source nodes
are represented as reservoirs with ID names “1” and “2”, respectively. Note that it contains no
surface species, no equilibrium species, and assumes that a constant chlorine concentration of 1.2
mg/L is maintained at each source.

 53

Figure 5-2 MSX input file for modeling two-source chlorine decay.

[OPTIONS]
 AREA_UNITS FT2
 RATE_UNITS HR
 SOLVER RK5
 TIMESTEP 300

[SPECIES]
 BULK T1 MG ;Source 1 tracer
 BULK CL2 MG ;Free chlorine

[COEFFICIENTS]
 CONSTANT k1 1.3 ;Source 1 decay coeff.
 CONSTANT k2 17.7 ;Source 2 decay coeff.

[PIPES]
 ;T1 is conservative
 RATE T1 0

 ;CL2 has first order decay
 RATE CL2 –(k1*T1 + k2*(1-T1))*CL2

[QUALITY]
 ;Initial conditions (= 0 if not specified here)
 NODE 1 T1 1.0
 NODE 1 CL2 1.2
 NODE 2 CL2 1.2

Oxidation, Mass Transfer, and Adsorption

This example is an extension and more complete description of the arsenic oxidation/adsorption
model that was presented previously in Sections 2 and 3 of this manual. It models the oxidation of
arsenite As+3 to arsenate As+5 by a monochloramine disinfectant residual NH2Cl in the bulk flow
along with the subsequent adsorption of arsenate onto exposed iron on the pipe wall. We also
include a mass transfer limitation to the rate at which arsenate can migrate to the pipe wall where it
is adsorbed.

Figure 5-3 shows a schematic of the arsenic model. Note that after arsenate is produced by the
oxidation of arsenite in the bulk solution it diffuses through a boundary layer to reach a
concentration denoted as As+5|W just adjacent to the pipe wall. It is this concentration that interacts
with adsorbed arsenate As+5|S on the pipe wall. Thus the system contains five species (dissolved
arsenite in bulk solution, dissolved arsenate in bulk solution, monochloramine in bulk solution,
dissolved arsenate just adjacent to the pipe wall surface and sorbed arsenate on the pipe surface).
One might argue that arsenate is a single species that appears in three different forms (bulk
dissolved, wall dissolved, and wall sorbed), but for purposes of modeling it is necessary to
distinguish each form as a separate species.

 54

Figure 5-3 Schematic of the mass transfer limited arsenic oxidation/adsorption system.

As+3 + NH2Cl As+5

As+5|S

As+5|W

Bulk Flow

Boundary Layer

Pipe Wall

The mathematical form of this reaction system can be modeled with five differential rate equations
in the case of non-equilibrium adsorption/desorption (see, e.g., Gu et al., 1994, for a more complete
description of non-equilibrium adsorption/desorption):

dAs+3

= −k As+3 ()NH Cl
dt a 2 (17)

()d NH2Cl
= −k ()NH Cl

dt b 2 (18)

dAs+5

= k + () + +
aAs 3 NH Cl K 5 5

dt 2 − f Av (As − Asw) (19)

dAs+5
w = K A ()As+5 − As+5 − A [k (S − As+5)As+5 − k As+5

v 1 max]
dt f v w s w 2 s (20)

dAs+5
s = k (S − As+5)As+5 − k As+5

dt 1 max s w 2 s (21)

where As+3 is the bulk phase concentration of arsenite, As+5 is the bulk phase concentration of
arsenate, As+5

w is the bulk phase concentration of arsenate adjacent to the pipe wall, As+5
s is surface

phase concentration of arsenate, and NH2Cl is the bulk phase concentration of monochloramine.
The parameters in these equations are as follows: ka is a rate coefficient for arsenite oxidation, kb is
a monochloramine decay rate coefficient due to reactions with all other reactants (including
arsenite), Av is the pipe surface area per liter of pipe volume, k1 and k2 are the arsenate adsorption
and desorption rate coefficients, Smax is the maximum pipe surface concentration, and Kf is a mass
transfer rate coefficient. The mass transfer coefficient Kf will in general depend on the amount of
flow turbulence as well as the diameter of the pipe. A typical empirical relation might be:

 55

1.6 ×10−4 Re0.88

Kf = (22)
D

where Re is the flow Reynolds number and D is the pipe diameter.

Using the notation defined in eqs. (1)-(3), xb = {As+3, As+5, As+5

w , NH2Cl}, xs = { As+5
s }, zb = {∅},

zs = {∅}, and p = {ka, kb, Av, k1, k2, Kf, Smax}. The reaction dynamics defined by (17)-(21)
conserves total arsenic mass within any pipe segment of length L (and thus bulk volume A×L, and
pipe surface area P×L, where A and P are cross sectional area and wetted perimeter, respectively).
This can be shown by summing the differential changes in the mass of all arsenic species within a
pipe segment, and assuring that they sum to zero: (A×L) (dAs+3/dt) + (A×L) (dAs+5/dt) + (A×L)
(d As+5

w /dt) + (P×L) (d As+5
s /dt) = 0.

It was mentioned in section 2 that some reactions are reversible and fast enough in comparison with
the system's other processes so that a local equilibrium can be assumed, while others are not
sufficiently fast and/or irreversible and it is inappropriate to use an equilibrium formulation to
represent them. In the case of reversible sorption processes a local equilibrium assumption (LEA)
is sometimes assumed between the adsorbed phase and its concentration in the bulk fluid (such an
assumption is not always realistic, and no such claim is made here – see, e.g., Koopman et al.
(1992)). Under the LEA, the rates of adsorption and desorption must be much faster than the rate
of change of the bulk species, and consequently, d As+5

s /dt = 0; the differential equation (21) can
then be substituted with the algebraic equation:

+

As 5 k 5
+ sSmaxAsw
s =

1+ ksAs+5 , (21b)
w

where ks = k1/k2. In this case the DAE system is described by (17)-(20) and (21b), and includes
four differential rate equations and one algebraic equation. Thus in terms of the notation used in
(1)-(3), xb = {As+3, As+5, As+5

w , NH2Cl}, xs = {∅}, zb = {∅}, zs = { As+5
s }, p = {ka, kb, Av, k1, k2,

Kf, Smax}. The LEA model could be left in this form that explicitly includes the surface adsorbed
phase (As+5

s) – or, because the special form of (21b) presents an explicit solution for the adsorbed
arsenate, (21b) could be substituted into (20), leaving an equivalent system of only four differential
rate expressions in the four bulk-phase variables x +3 +5 +5

b = {As , As , Asw , NH2Cl}. In this latter
case, however, the adsorbed phase arsenate concentration would have to be separately calculated
after solution (if desired), using (21b), which could be laborious if it were required at many
locations and time steps.

Figure 5-4 shows the MSX input file for this system, with the assumption of local equilibrium (eqs.
(17)-(20) and (21b)). The [PIPES] section contains four kinetic rate reactions involving the four
bulk species and one equilibrium reaction that includes the lone surface species. The [TANKS]
section contains only the bulk species reactions. To complete the model specification, the
[QUALITY] section assumes that the network has a single source which is a reservoir node

 56

labeled “1”, and that the concentrations at this source remain constant. If this were not the case then
a [SOURCES] section could be added that describes the sources in more detail.

[SPECIES]
 BULK A3 UG ;Dissolved arsenite
 BULK A5 UG ;Dissolved arsenate
 BULK A5w UG ;Dissolved arsenate at wall
 WALL A5s UG ;Adsorbed arsenate
 BULK NH2CL MG ;Monochloramine

[COEFFICIENTS]
 CONSTANT Ka 10.0 ;Arsenite oxidation rate coeff.
 CONSTANT Kb 0.50 ;Monochloramine decay rate coeff.
CONSTANT Smax 50 ;Arsenate adsorption coeff.
CONSTANT K1 5.0 ;Arsenate adsorption rate coeff.
CONSTANT K2 1.0 ;Arsenate desorption rate coeff.

[TERMS]
Kf 1.6e-4*Re^0.88/D ;Mass transfer coefficient (Ft/Hr)
Ks K1/K2 ;Arsenate equil. adsorption coeff.
LPERCF 28.316 ;Liters/Cu. Ft. (conversion for Kf)

[PIPES]
RATE A3 -Ka*A3*NH2CL ;Arsenite oxidation

 ;Arsenate production
 RATE A5 Ka*A3*NH2CL – LPERCF*Kf*Av*(A5 – A5w)
 ;Arsenate at pipe wall
RATE A5w LPERCF*Kf*Av*(A5 – A5w) – Av*(K1*(Smax-A5s)*A5w – K2*A5s)

 RATE NH2CL –Kb*NH2CL ;Monochloramine oxidation
 EQUIL A5s Smax*Ks*A5w/(1.0 + Ks*A5w) – A5s ;Arsenate adsorption

[TANKS]
 RATE A3 -Ka*A3*NH2CL ;Arsenite oxidation
 RATE A5 Ka*A3*NH2CL ;Arsenate w/o mass tran.
 RATE A5w 0 ;Not present in a tank
 RATE NH2CL –Kb*NH2CL ;Monochloramine oxidation

[QUALITY]
 ;Initial conditions (= 0 if not specified here)
 NODE 1 A3 10.0
 NODE 1 A5 0.0
 NODE 1 NHCL 2.5

Figure 5-4 MSX input file for the mass transfer limited arsenic oxidation/adsorption system.

Note about equation units. The modeler must understand the units of all quantities used in
mathematical expressions, and ensure that the resulting expressions are dimensionally correct. In
short, a complete unit analysis for each expression and resulting RATE or EQUIL term is an
essential quality assurance step for developing MSX models. As an example, consider eq. (20)
above, repeated here for convenience:

 57

dAs+5
w = K A ()As+5 − As+5 5 +5

f v w − A [k + +5

dt v 1(Smax − Ass)Asw − k2Ass]

The units of the left hand side are the units of the bulk species, As+5

w , divided by the units used for
time. Since the default time unit is hours, the left hand side has units of [µg/L-hr], and
consequently each of the two main terms on the right hand side must have these same units. Since
Av was previously defined as the pipe surface area per liter pipe volume, and the default area unit is
[ft2], this quantity has units of [ft2/L] (Av is a pre-defined MSX hydraulic variable – see the
description of the [TERMS] input in section 4 of this manual). From this analysis we find that the
mass transfer coefficient K 2

f in the first term on the right hand side must have units of [L/ft -hr].
The units of the previous expression for Kf in (22) are, however, the more conventional velocity
units of [ft/hr], requiring multiplication by the number of liters per cubic ft: [ft/hr] × [L/ ft3] =
[L/ft2-hr]. This unit analysis explains the presence of the term LPERCF in the above MSX input
file; without this term the expressions would not be dimensionally consistent and the results would
be invalid. The reader should verify that the second term on the right hand side is dimensionally
correct – given the units of Av – provided that rate coefficient k1 has units [L/µg-hr], and k2 has
units [1/hr] (recall that the surface species has units of [µg/ft2], since we are using the default area
units).

Bacterial Regrowth with Chlorine Inhibition

This next example models bacterial regrowth as affected by chlorine inhibition within a distribution
system. The regrowth model is taken from Zhang et al. (2004) and includes the following processes
depicted in Figure 5-5:

Figure 5-5 Conceptual diagram of bacterial regrowth within a pipeline. Dashed arrows represent
reactions with chlorine while solid arrows represent transformation processes.

Pipe Wall

Free Live
Bacteria

Free Dead
Bacteria

Attached Live
Bacteria

Attached Dead
Bacteria

DOC BDOC Chlorine

 58

a. Both free bacteria in the bulk flow and bacteria attached to the pipe wall utilize the
biodegradable fraction of dissolved organic carbon (BDOC and DOC, respectively) as a
growth substrate. Monod kinetics are used to describe this growth with the following rate
equations:

dX
= μX

dt growth

dS
= −μX / Y

dt

where X is mass concentration of bacterial cells, S is the concentration of BDOC, Y is a
yield coefficient (mass of cells produced per unit conversion of BDOC), and μ is a specific
growth coefficient. The latter decreases with the BDOC concentration according to:

μmaxSμ =
S + K s

where μmax is the maximum growth rate coefficient and Ks is the half-saturation constant.

b. Both free and attached bacteria die at a first order rate:

dX
= −k X

dt d
decay

where kd is a decay rate coefficient.

c. Deposition of free bacterial cells onto the pipe wall is modeled with the following first-
order rate process:

dX
= −k X

dt dep
deposition

while detachment of attached cells into the bulk flow also depends on flow velocity:

 dX
= k XU

dt det
det achment

where kdep is a deposition rate constant, kdet is a detachment rate constant, and U is the bulk
flow velocity.

d. The effect of chlorine on limiting the number of viable bacterial cells is modeled by
applying an inhibition factor I to the bacterial specific growth rate as:

⎛ − (C − C⎜ t) ⎞
I = exp ⎟⎜ ⎟

⎝ Cc ⎠

Here C is the chlorine concentration, Ct is a threshold chlorine concentration below which
no inhibition occurs, and Cc is a characteristic chlorine concentration that scales the degree
of inhibition. Note at higher values of C, I becomes smaller and therefore results in smaller
bacterial growth rates.

 59

e. Chlorine reacts with DOC in the bulk flow to decay at a first-order rate:

dC
= −k C

dt b

where C is chlorine concentration and kb is a bulk decay rate coefficient.

The EPANET-MSX specification of the full model is shown in Figure 5-6.

 60

[OPTIONS]
AREA_UNITS CM2

RATE_UNITS HR
SOLVER RK5
TIMESTEP 300

[SPECIES]
BULK CL2 MG ;chlorine
BULK S MG ;organic substrate
BULK Xb UG ;mass of free bacteria
WALL Xa UG ;mass of attached bacteria
BULK Nb log(N) ;number of free bacteria
WALL Na log(N) ;number of attached bacteria

[COEFFICIENTS]
CONSTANT Kb 0.05 ;CL2 decay constant (1/hr)
CONSTANT CL2C 0.20 ;characteristic CL2 (mg/L)
CONSTANT CL2Tb 0.03 ;threshold CL2 for Xb (mg/L)
CONSTANT CL2Ta 0.10 ;threshold CL2 for Xa (mg/L)
CONSTANT MUMAXb 0.20 ;max. growth rate for Xb (1/hr)
CONSTANT MUMAXa 0.20 ;max. growth rate for Xa (1/hr)
CONSTANT Ks 0.40 ;half saturation constant (mg/L)
CONSTANT Kdet 0.03 ;detachment rate constant (1/hr/(ft/s))
CONSTANT Kdep 0.08 ;deposition rate constant (1/hr)
CONSTANT Kd 0.06 ;bacterial decay constant (1/hr)
CONSTANT Yg 0.15 ;bacterial yield coefficient (mg/mg)

[TERMS]
Ib EXP(-STEP(CL2-CL2Tb)*(CL2-CL2Tb)/CL2C) ;Xb inhibition coeff.
Ia EXP(-STEP(CL2-CL2Ta)*(CL2-CL2Ta)/CL2C) ;Xa inhibition coeff.
MUb MUMAXb*S/(S+Ks)*Ib ;Xb growth rate coeff.
MUa MUMAXa*S/(S+Ks)*Ia ;Xa growth rate coeff.

[PIPES]
RATE CL2 -Kb*CL2
RATE S -(MUa*Xa*Av + MUb*Xb)/Yg/1000
RATE Xb (MUb-Kd)*Xb + Kdet*Xa*U*Av - Kdep*Xb
RATE Xa (MUa-Kd)*Xa - Kdet*Xa*U + Kdep*Xb/Av
FORMULA Nb LOG10(1.0e6*Xb)
FORMULA Na LOG10(1.0e6*Xa)

[TANKS]
RATE CL2 -Kb*CL2
RATE S -MUb*Xb/Yg/1000
RATE Xb (MUb-Kd)*Xb
FORMULA Nb LOG10(1.0e6*Xb)

[SOURCES]
CONCEN SrcNode CL2 1.2
CONCEN SrcNode S 0.4
CONCEN SrcNode Xb 0.01

Figure 5-6 MSX input file for a bacterial regrowth model with chlorine inhibition.

 61

Several notes of explanation require mentioning:

1. There are six species defined for the model: bulk chlorine (CL2), bulk biodegradable
dissolved organic carbon (S), bulk bacterial concentration (Xb), bulk bacterial cell count
(Nb), attached bacterial concentration (Xa), and attached bacterial cell count (Na). CL2 and
S are measured in milligrams. The bacterial concentrations are expressed in micrograms of
equivalent carbon so that their numerical values scale more evenly. The bacterial cell counts
are expressed as the logarithm of the number of cells.

2. The entries in the [PARAMETERS] section are based on values provided by Zhang et al.
(2004) and are used only for illustrative purposes.

3. The [TERMS] section allows one to define intermediate mathematical terms in the
model’s description so that the rate equations can be expressed more clearly and compactly.

4. The chlorine inhibition threshold concentration is lower for the bulk phase than for the
surface phase. This results in defining separate inhibition factors, Ib and Ia for these two
phases, respectively.

5. The special EPANET-MSX function STEP(x) used in the definitions of the inhibition
factors Ib and Ia is internally evaluated to 1 when x > 0 and is 0 otherwise.

6. The variables U and Av are reserved symbols in EPANET-MSX that represent flow velocity
and pipe surface area per unit volume, respectively, and their values are automatically
computed by the program.

7. Whenever the surface biomass species appears in the rate expression for a bulk species it is
multiplied by Av to convert from areal density to volumetric concentration. Likewise, the
bulk biomass concentration is divided by Av in the rate expression for attached biomass to
convert it to an areal density.

8. The kinetic rate expressions for tanks do not include any terms involving Xa since it is
assumed that surface species do not exist (or have reduced significance) within storage
facilities.

9. A simple FORMULA expression is used to convert from micrograms of bacterial carbon to
logarithmic cell counts. It assumes that there are 106 cells per microgram of carbon in the
cell biomass.

10. The model assumes that there is a single source node named SrcNode that supplies all
water to the system. The [SOURCES] section specifies the concentrations of chlorine,
biodegradable carbon, and bulk bacterial concentration in this water. The latter value was
derived from assuming that the treated source water contained 10 cells/mL (i.e., 104 cells
per liter).

 62

Chloramine Decomposition

This final example illustrates a complex chemical reaction system involving both kinetic rate
expressions and nonlinear equilibrium relationships. The system being studied is the auto-
decomposition of monochloramine to ammonia in the presence of natural organic matter (NOM).
When chloramines are used as a secondary disinfectant care must be taken to avoid producing
excessive amounts of free ammonia that can contribute to biological nitrification episodes within
the distribution system. The reaction model used for this system was developed by Valentine and
co-workers (Vikesland et al., 2001; Duirk et al., 2005) and is shown in Table 5-1. The principal
species are hypochlorous acid (HOCl), hypochlorite ion (OCL-), ammonia (NH3), ammonium ion
(NH +

4), monochloramine (NH2Cl), dichloramine (NHCl2), an unidentified intermediate compound
(I), and total organic carbon (TOC). Because the reactions involve acid-base dissociations and the
rate coefficient of the disproportionation of NH2Cl is a function of both pH and carbonate species,
the pH-carbonate equilibrium system is also included.

Figure 5-7 shows the EPANET-MSX specification of the monochloramine decay model. There are
14 bulk species and no surface species. To save space in the figure, the entries in the
[COEFFICIENTS] section were omitted since they are simply the rate coefficients k1 through k12
already listed in Table 5-1. The expression for k5 as a function of pH and carbonate species is
included in the [TERMS] section, as are the rate terms contributed by the reactants of reactions 1
through 10 in Table 5-1. Because there are no surface species in the model, the reaction expressions
listed in the [PIPES] section apply to the storage tanks as well.

The first five rate expressions apply to the various chlorinated species, ammonia, and the un-named
intermediate compound. The next three rate expressions, all set equal to 0, state that pH, alkalinity,
and TOC are assumed to remain constant. These are followed by two equilibrium expressions that
represent the dissociation reactions of hypochlorous acid and ammonia, respectively. The final set
of four equilibrium expressions model the distribution of the various carbonate species under
conditions of constant alkalinity and pH. Note that in order to solve this carbonate equilibrium sub-
system it is necessary to supply initial values for pH and alkalinity at all nodes of whatever network
is being modeled. This is done in the [QUALITY] section, using the GLOBAL specifier to set
values throughout the network. (The alkalinity of 0.004 moles/L is equivalent to 200 mg/L as
CaCO3 while the H+ value of 2.818x10-8 moles/L is the same as a pH of 7.75.)

 63

Reaction Stoichiometry

Rate Coefficient/
Equilibrium Constanta

R.1
R.2
R.3
R.4
R.5

R.6
R.7
R.8
R.9
R.10
R.11

R.12

E.1
E.2
E.3
E.4

HOCl + NH3 → NH2Cl + H2O
NH Cl + H O → HOCl + NH2 2 3

HOCl + NH2Cl → NHCl2 + H2O
NHCl2 + H2O → HOCl + NH2Cl
NH2Cl + NH2Cl → NHCl2 + NH3

NHCl2 + NH3 → NH2Cl + NH2Cl
NHCl2 + H2O → I
I + NHCl2 → HOCl + products
I + NH Cl → products 2

NH2Cl + NHCl2 → products
NH2Cl + S ×TOC → productsb

1

HOCl + S2×TOC → productsc

HOCl ↔ H+ + OCl-
NH +

4 ↔ NH + H+
3

-H2CO3 ↔ HCO3 + H+
- 2-HCO3 ↔ CO3 + H+

10 -1 -1k1 = 1.5×10 M h
 h-1 k = 7.6×10-2

2

k3 = 1.0×106 M-1h-1

k4 = 2.3×10-3 h-1

 k5 = 2.5×107 [H+] +

 4.0×104 [H2CO3] +
- 800 [HCO3] M-2h-1

k6 = 2.2×108 M-2h-1

5k7 = 4.0×10 M-1h-1

-1k8 = 1.0×108 M-1h

k = 3.0×107 M-1h-1
9

k10 = 55.0 M-1h-1
4 M-1h-1k11 = 3.0×10

S1 = 0.02
M-1h-1k12 = 6.5×105

S2 = 0.5

pKa = 7.5
pKa = 9.3
pKa = 6.3
pKa = 10.3

Notes:
a. All rate coefficients and equilibrium constants are for 25 degrees C.
b. S1 is the fast reactive fraction of TOC.
c. S2 is the slow reactive fraction of TOC.

Table 5-1 Monochloramine decay model based on Vikesland et al. (2001) and Duirk et al. (2005).

 64

Figure 5-7 MSX input file of the monochloramine decomposition model.

[OPTIONS]
RATE_UNITS HR
SOLVER ROS2
COUPLING NONE
TIMESTEP 300
RTOL 0.0001
ATOL 1.0e-8

[SPECIES]
BULK HOCL MOLES ;hypochlorous acid
BULK NH3 MOLES ;ammonia
BULK NH2CL MOLES ;monochloramine
BULK NHCL2 MOLES ;dichloramine
BULK I MOLES ;unknown intermediate
BULK OCL MOLES ;hypochlorite ion
BULK NH4 MOLES ;ammonium ion
BULK ALK MOLES ;total alkalinity
BULK TOC MOLES ;total organic carbon
BULK H MOLES ;hydrogen ion
BULK OH MOLES ;hydroxide ion
BULK CO3 MOLES ;carbonate ion
BULK HCO3 MOLES ;bicarbonate ion
BULK H2CO3 MOLES ;dissolved carbon dioxide

[COEFFICIENTS]
PARAMETER k1 1.5e10
PARAMETER k2 7.6e-2
PARAMETER k3 1.0e6
PARAMETER k4 2.3e-3
PARAMETER k6 2.2e8
PARAMETER k7 4.0e5
PARAMETER k8 1.0e8
PARAMETER k9 3.0e7
PARAMETER k10 55.0

PARAMETER kDOC1 3.0E4
PARAMETER kDOC2 6.5E5
CONSTANT S1 0.02
CONSTANT S2 0.50

[TERMS]
k5 (2.5e7*H) + (4.0e4*H2CO3) + (800*HCO3)
a1 k1*HOCL*NH3
a2 k2*NH2CL
a3 k3*HOCL*NH2CL
a4 k4*NHCL2
a5 k5*NH2CL*NH2CL
a6 k6*NHCL2*NH3*H
a7 k7*NHCL2*OH
a8 k8*I*NHCL2
a9 k9*I*NH2CL
a10 k10*NH2CL*NHCL2
a11 k11*S1*TOC*NH2CL
a12 k12*S2*TOC*HOCL

 65

Figure 5-7 Continued.

[PIPES]
RATE HOCL -a1 + a2 - a3 + a4 + a8 – a12
RATE NH3 -a1 + a2 + a5 - a6 + a11
RATE NH2CL a1 - a2 - a3 + a4 - a5 + a6 - a9 - a10 – a11
RATE NHCL2 a3 - a4 + a5 - a6 - a7 - a8 - a10
RATE I a7 - a8 - a9
RATE H 0
RATE ALK 0
RATE TOC 0
EQUIL OCL H*OCL - 3.16E-8*HOCL
EQUIL NH4 H*NH3 - 5.01E-10*NH4
EQUIL CO3 H*CO3 - 5.01E-11*HCO3
EQUIL H2CO3 H*HCO3 - 5.01E-7*H2CO3
EQUIL HCO3 ALK - HCO3 - 2*CO3 - OH + H
EQUIL OH H*OH - 1.0E-14

[QUALITY]
GLOBAL ALK 0.004
GLOBAL H 2.818E-8

 66

This page intentionally blank.

 67

6. REFERENCES

Duirk, S.E.; Gombert, B.; Croue, J-P.; Valentine, R.L. (2005). “Modeling monochloramine loss in
the presence of natural organic matter”, Water Research, 39, 3418-3431.

Golub, G. and Ortega, J., Scientific computing and ordinary differential equations, Academic press,
1992.

Gu, B; Schmitt, J.; Chen, Z; Liang, L; McCarthy, J (1994). “Adsorption and desorption of natural
organic matter on iron oxide: mechanisms and models,” Environ. Sci. Technol.; 28(1); 38-46.

Hairer, E.; Norsett, S.P.; Warner G. (1993). Solving Ordinary Differential Equations I. Nonstiff
Problems, 2nd edition, Springer Series in Computational Mathematics, Springer-Verlag.

Koopman, D; Cole, J; Lee, H. (1992). “Assumption of Local Equilibrium in Adsorption Processes”,
AIChE J., 38(4).

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1992). Numerical Recipes in
C, 2nd Edition, Cambridge University Press, Cambridge.

Rossman, L.A. (1999). “The EPANET Programmer’s Toolkit for Analysis of Water Distribution
Systems”, Proc. 26th Annual Water Resources Planning and Management Conference, (E.M.
Wilson, editor), American Society of Civil Engineers, Reston, VA.

Rossman, L.A. (2000) EPANET 2 Users Manual. EPA/600/R-00/057, U.S. Environmental
Protection Agency, Cincinnati, OH.

Verwer, J.G.; Spee, E.J.; Blom, J.G.; Hundsdorfer, W.H. (1999). “A second order Rosenbrock
method applied to photochemical dispersion problems”, SIAM J. Sci. Comput., 20, 1456-1480.

Vikesland, P.J.; Ozekin, K.; Valentine, R.L. (2001). “Monochloramine decay in model and
distribution system waters”, Water Research, 35 (7), 1766-1776.

Zhang, W.; Miller, C. T.; DiGiano, F. A. (2004). ”Bacterial regrowth model for water distribution
systems incorporating alternating split-operator solution technique”, Jour. Environmental
Engineering, 130 (9), 932-941.

 68

This page intentionally blank.

 69

APPENDIX A. MSX TOOLKIT FUNCTIONS

The EPANET-MSX toolkit is a library of functions that programmers can use to create their own
custom versions of the multi-species extension of EPANET. The MSX functions are used in
conjunction with the standard EPANET toolkit functions which can also provide additional
flexibility for programmers. Information on using the standard EPANET toolkit is available
through a Windows Help file named TOOLKIT.HLP that is part of the EN2toolkit.zip file available
at the web site www.epa.gov/ORD/NRMRL/wswrd/epanet.html. Tables A-1, A-2, and A-3 list the
name of each MSX toolkit function along with a brief description of its purpose.

These functions reside in a Windows Dynamic Link Library (DLL) named epanetmsx.dll and can
be used in any programming language that can access DLLs, such as C/C++, Delphi Pascal, Visual
Basic, and MatLab. The toolkit also includes special header files that must be included in any
program modules that reference the MSX functions. These header files are named epanetmsx.h for
C/C++ programs, epanetmsx.pas for Delphi programs, and epanetmsx.bas for Visual Basic
programs.

Prior to using any of the MSX toolkit functions a standard EPANET input file must be opened
using the ENopen function from the standard EPANET toolkit DLL, epanet2.dll. In addition, after
all processing is completed the ENclose function from the standard toolkit must be called. Thus the
header files for the standard toolkit (epanet2.h, epanet2.pas, or epanet2.bas) must also be included
in the application’s code. Finally, if a stand-alone command line executable is being produced from
C/C++ then the LIB files epanet2.lib and epanetmsx.lib must be linked in when the compiled
source files are linked together. (Note: The LIB files supplied with the EPANET-MSX distribution
are compatible with the Microsoft C/C++ compiler version 6 and higher.)

The following pages provide a description of each toolkit function using C/C++ syntax to represent
argument variables and return types.

 70

Function Name Purpose

MSXopen Opens the EPANET-MSX toolkit system.

MSXclose Closes the EPANET-MSX toolkit system.

MSXsolveH Solves for system hydraulics over the entire simulation period,
saving results to an internal scratch file.

MSXusehydfile Uses a previously saved EPANET hydraulics file as the source of
hydraulic information.

MSXsolveQ Solves for water quality over the entire simulation period and saves
the results to an internal scratch file.

MSXinit Initializes the MSX system before solving for water quality results in
a step-wise fashion.

MSXstep Advances the water quality solution through a single water quality
time step when performing a step-wise simulation.

MSXsaveoutfile Saves water quality results computed for each node, link and
reporting time period to a named binary file.

MSXsavemsxfile Saves the data associated with the current MSX project into a new
MSX input file.

MSXreport Writes water quality simulations results as instructed by the MSX
input file to a text file.

Table A-1 EPANET-MSX toolkit processing functions.

 71

Table A-2 EPANET-MSX toolkit data retrieval functions.

Function Name Purpose

MSXgetindex Retrieves the internal index number of an MSX object given its ID
name.

MSXgetIDlen Retrieves the number of characters in the ID name of an MSX object
given its internal index number.

MSXgetID Retrieves the ID name of an MSX object given its internal index
number.

MSXgetcount Retrieves the number of objects of a specific type.

MSXgetspecies Retrieves the attributes of a chemical species given its internal index
number.

MSXgetinitqual Retrieves the initial concentration of a particular chemical species
assigned to a specific node or link of the pipe network.

MSXgetqual Retrieves the concentration of a chemical species at a specific node
or link of the network at the current simulation time step.

MSXgetconstant Retrieves the value of a particular reaction constant.

MSXgetparameter Retrieves the value of a particular reaction parameter for a given
pipe or tank within the pipe network.

MSXgetsource Retrieves information on any external source of a particular chemical
species assigned to a specific node of the pipe network.

MSXgetpatternlen Retrieves the number of time periods within a source time pattern.

MSXgetpatternvalue Retrieves the multiplier at a specific time period for a given source
time pattern.

MSXgeterror Returns the text for an error message given its error code.

 72

Table A-3 EPANET-MSX data modification functions.

Function Name Purpose

MSXsetconstant Assigns a new value to a specific reaction constant.

MSXsetparameter Assigns a value to a particular reaction parameter for a given pipe or
tank within the pipe network.

MSXsetinitqual Assigns an initial concentration of a particular chemical species to a
specific node or link of the pipe network.

MSXsetsource Sets the attributes of an external source of a particular chemical
species to a specific node of the pipe network.

MSXsetpattern Assigns a new set of multipliers to a given MSX source time pattern.

MSXsetpatternvalue Assigns a new value to the multiplier for a specific time period in a
given MSX source time pattern.

MSXaddpattern Adds a new, empty MSX source time pattern to the project.

 73

MSXopen

Declaration:
int MSXopen(char * f);

Description:
 Opens the EPANET-MSX toolkit system.

Arguments:

 f is a C-style character string containing the name of an EPANET-MSX input file.

Returns:
 Returns an error code or 0 for no error.

Notes:

The standard EPANET toolkit function ENopen must have been called first to open the
EPANET toolkit along with an associated EPANET input file for the network being
analyzed as well as to identify the name of a report file to which results are written.

Example:

//Open the EPANET toolkit
int err = ENopen(“example1.inp, “example1.rpt”, “”);

//Open the MSX toolkit
if (err == 0) err = MSXopen(“example1.msx”);

//Add code to perform required analyses here
if (err == 0) ...

//Don’t forget to close the toolkits
MSXclose();
ENclose();
exit(err);

 74

MSXclose

Declaration:
int MSXclose(void);

Description:

Closes the EPANET-MSX toolkit system.

Arguments:

None.

Returns:

Returns an error code or 0 for no error.

Notes:

The EPANET toolkit function ENclose should be called at some point after calling
MSXclose to down the EPANET toolkit system.

Example:

//Open the EPANET toolkit
int err = ENopen(“example1.inp, “example1.rpt”, “”);

//Open the MSX toolkit
if (err == 0) err = MSXopen(“example1.msx”);

//Add code to perform required analyses here
if (err == 0) ...

//Don’t forget to close both toolkits
MSXclose();
ENclose();

 75

MSXsolveH

Declaration:
int MSXsolveH(void);

Description:

Solves for system hydraulics over the entire simulation period saving results to an internal
scratch file.

Arguments:

None.

Returns:

Returns an error code or 0 for no error.

Notes:

Either this function or MSXusehydfile (see below) must be called before any water
quality processing is performed.

Example:

//Open the EPANET & MSX toolkits
int err = ENopen(“example1.inp, “example1.rpt”, “”);
if (err == 0) MSXopen(“example1.msx”);

//Solve for hydraulics
if (err == 0) err = MSXsolveH();

//Perform water quality analysis starting here
...

 76

MSXusehydfile

Declaration:
int MSXusehydfile(char * f);

Description:

Uses a previously saved EPANET hydraulics file as the source of hydraulic information.

Arguments:

f is a C-style character string containing the name of a previously saved hydraulics file for
the system being analyzed.

Returns:

Returns an error code or 0 for no error.

Notes:

Either this function or MSXsolveH (see above) must be called before any water quality
processing is performed.

Example:

//Open the EPANET toolkit
int err = ENopen(“example1.inp, “example1.rpt”, “”);
if (err > 0) return err;

//Use EPANET to solve & save hydraulic results
ENsolveH();
ENsavehydfile(“example1.hyd”);

//Open the MSX toolkit
err = MSXopen(“example1.msx”);
if (err > 0) return err;

//Utilize the hydraulic solution just saved to file
err = MSXusehydfile(“example1.hyd”);

//Perform water quality analysis starting here
...

 77

MSXsolveQ

Declaration:
int MSXsolveQ(void);

Description:

Solves for water quality over the entire simulation period and saves the results to an internal
scratch file.

Arguments:

None.

Returns:

Returns an error code or 0 for no error.

Notes:

This function does not allow access to computed water quality results as the simulation
unfolds. If such information is required use MSXinit in conjunction with step-wise calls to
MSXstep (see below).

Example:

//Open the EPANET & MSX toolkits
int err = ENopen(“example1.inp, “example1.rpt”, “”);
if (err == 0) err = MSXopen(“example1.msx”);
if (err > 0) return err;

//Solve for hydraulics & water quality
MSXsolveH();
MSXsolveQ();

//Report results
MSXreport();

//Close the toolkits
MSXclose();
ENclose();

 78

MSXinit

Declaration:
int MSXinit(int saveFlag);

Purpose:

Initializes the MSX system before solving for water quality results in step-wise fashion.

Arguments:

Set saveFlag to 1 if water quality results should be saved to a scratch binary file, or to 0
if results are not saved to file.

Returns:

Returns an error code or 0 for no error.

Notes:

This function must be called before a step-wise water quality simulation is performed using
MSXstep. Do not call this function if performing a complete simulation using
MSXsolveQ.

Example:

See the example provided for MSXstep.

 79

MSXstep

Declaration:
int MSXstep(long *t, long *tleft);

Description:

Advances the water quality solution through a single water quality time step when
performing a step-wise simulation.

Arguments:

Upon returning, t will contain the current simulation time at the end of the step (in seconds)
while tleft will contain the time left in the simulation (also in seconds).

Returns:

Returns an error code or 0 for no error.

Notes:

This function should be placed in a loop that repeats until the value of tleft becomes 0.
MSXinit should be called before beginning the loop.

The water quality time step used by this function is specified in the [OPTIONS] section of
the MSX input file.

Example:

//Declare time variables
long t = 0, tleft = 0;
int err;

//Open the EPANET & MSX toolkits
...

//Solve for hydraulics
MSXsolveH();

//Run a water quality simulation
MSXinit(0);
do {
 err = MSXstep(&t, &tleft);
 //Use MSXgetqual to retrieve results at time t
} while (tleft > 0 && err == 0);

 80

MSXsaveoutfile

Declaration:
int MSXsaveoutfile(char * f);

Description:

Saves water quality results computed for each node, link and reporting time period to a
named binary file.

Arguments:

f is a C-style character string containing the name of the permanent output results file.

Returns:

Returns an error code or 0 for no error.

Example:

//Open the EPANET & MSX toolkits
...

//Solve for hydraulics & water quality
MSXsolveH();
MSXsolveQ();

//Copy saved results to a permanent file
MSXsaveoutfile(“example1.out”);

//Close the toolkits
...

 81

MSXsavemsxfile

Declaration:
int MSXsavemsxfile(char * f);

Description:

Saves the data associated with the current MSX project into a new MSX input file.

Arguments:

f is a C-style character string containing the name of the file to which data are saved.

Returns:

Returns an error code or 0 for no error.

Notes:

For a step-wise simulation using MSXstep, this function only applies if MSXinit was
called with its saveFlag parameter set to 1 (see MSXinit).

The format of the binary results file is described in Appendix B.

Example:

//Open the EPANET & MSX toolkits
int err = ENopen(“example1.inp, “example1.rpt”, “”);
if (err == 0) err = MSXopen(“example1.msx”);
if (err > 0) return err;

//Save the current MSX data to a different MSX file
MSXsavemsxfile(“example1a.msx”);

//Close the toolkits
...

 82

MSXreport

Declaration:
int MSXreport(void);

Description:

Writes water quality simulations results as instructed by the MSX input file to a text file.

Arguments:

None.

Returns:

Returns an error code or 0 for no error.

Notes:

Results are written to the report file specified in the ENopen function, unless a specific
water quality report file is named in the [REPORT] section of the MSX input file.

Example:

//Open the EPANET & MSX toolkits
...

//Solve for hydraulics & water quality
MSXsolveH();
MSXsolveQ();

//Write results to the “example1.rpt” file
MSXreport();

//Close the toolkits
...

 83

MSXgetindex

Declaration:
int MSXgetindex(int type, char * name, int * index);

Description:

Retrieves the internal index number of an MSX object given its name.

Arguments:

type is the type of object being sought and must be one of the following pre-defined
constants:

MSX_SPECIES (for a chemical species),
MSX_CONSTANT (for a reaction constant),
MSX_PARAMETER (for a reaction parameter),
MSX_PATTERN (for a time pattern);

name is a C-style character string containing the object’s ID name;

index is the sequence number (starting from 1) of the object in the order it was listed in
the MSX input file.

Returns:

Returns an error code or 0 for no error.

Example:

//Declare an index variable
int i;

//Open the EPANET & MSX toolkits
...

//Get the index of the chemical species named “CL2”
MSXgetindex(MSX_SPECIES, “CL2”, &i);

 84

MSXgetIDlen

Declaration:
int MSXgetIDlen(int type, int index, int * len);

Description:

Retrieves the number of characters in the ID name of an MSX object given its internal index
number.

Arguments:

type is the type of object being sought and must be one of the following pre-defined
constants:

MSX_SPECIES (for a chemical species),
MSX_CONSTANT (for a reaction constant),
MSX_PARAMETER (for a reaction parameter),
MSX_PATTERN (for a time pattern);

index is the sequence number of the object (starting from 1 as listed in the MSX input
file);

len is returned with the number of characters in the object’s ID name, not counting the
null termination character.

Returns:

Returns an error code or 0 for no error.

Example:

//This code finds the longest species name within a project

//Declare some variables
int count, i, len, maxlen = 0;

//Open the EPANET & MSX toolkits
...

//Examine each species
MSXgetcount(MSX_SPECIES, &count);
for (i=1; i<=count; i++) {

 //Update longest species name
 MSXgetIDlen(MSX_SPECIES, i, &len);
 if (len > maxlen) maxlen = len;
}

 85

MSXgetID

Declaration:
int MSXgetID(int type, int index, char * id, int len);

Description:

Retrieves the ID name of an object given its internal index number.

Arguments:

type is the type of object being sought and must be one of the following pre-defined
constants:

MSX_SPECIES (for a chemical species),
MSX_CONSTANT (for a reaction constant),
MSX_PARAMETER (for a reaction parameter),
MSX_PATTERN (for a time pattern);

index is the sequence number of the object (starting from 1 as listed in the MSX input
file);

id is a C-style character string that is returned with the object’s ID name.

len is the maximum number of characters that id can hold, not counting the null
termination character...

Returns:

Returns an error code or 0 for no error.

Notes:

The MSXgetIDlen function can determine the number of characters in an object’s ID
name so that the character array id can be properly sized (to len + 1).

Example:

//Declare a string to hold a species ID
char id[16];

//Open the EPANET & MSX toolkits
...

//Get the name of the 2nd species in the MSX input file
MSXgetID(MSX_SPECIES, 2, id, sizeof(id)-1);

 86

MSXgetcount

Declaration:
int MSXgetcount(int type, int * count);

Description:

Retrieves the number of objects of a specific type.

Arguments:

type is the type of object being sought and must be one of the following pre-defined
constants:

MSX_SPECIES (for a chemical species),
MSX_CONSTANT (for a reaction constant),
MSX_PARAMETER (for a reaction parameter),
MSX_PATTERN (for a time pattern);

count is the number of objects of that type defined in the MSX input file.

Returns:

Returns an error code or 0 for no error.

Example:

//Declare a variable for the number of chemical species
int nSpecies;

//Open the EPANET & MSX toolkits
...

//Get the number of species
MSXgetcount(MSX_SPECIES, &nSpecies);

 87

MSXgetspecies

Declaration:
int MSXgetspecies(int species, int * type, char * units,
 double * aTol, double * rTol);

Description:

Retrieves the attributes of a chemical species given its internal index number.

Arguments:

species is the sequence number of the species (starting from 1 as listed in the MSX input
file);

type is returned with one of the following pre-defined constants:

MSX_BULK (defined as 0) for a bulk water species,
MSX_WALL (defined as 1) for a pipe wall surface species;

units is a C-style character string array that is returned with the mass units that were
defined for the species in question. It must be sized to hold a maximum of 15 characters
plus the terminating null character (for a total of 16).

aTol is returned with the absolute concentration tolerance defined for the species (in
concentration units);

rTol is returned with the relative concentration tolerance defined for the species.

Returns:

Returns an error code or 0 for no error.

Example:

//Declare some variables
int sIndex, sType, sUnits;
double aTol, rTol;

//Open the EPANET & MSX toolkits
...

//Get attributes of the species named “Xwall”
MSXgetindex(MSX_SPECIES, “Xwall”, &sIndex);
MSXgetspecie(sIndex, &sType, &sUnits, &aTol, &rTol);

 88

MSXgetinitqual

Declaration:
int MSXgetinitqual(int obj, int index, int species,
 double * value);

Description:

Retrieves the initial concentration of a particular chemical species assigned to a specific
node or link of the pipe network.

Arguments:

obj is type of object being queried and must be either:
MSX_NODE (defined as 0) for a node
MSX_LINK (defined as 1) for a link;

index is the internal sequence number (starting from 1) assigned to the node or link;

species is the sequence number of the species (starting from 1);

value is returned with the initial concentration of the species at the node or link of
interest.

Returns:

Returns an error code or 0 for no error.

Notes:

The EPANET toolkit functions ENgetnodeindex and ENgetlinkindex can be used to
identify the index of a node or link from its ID name;

Concentrations are expressed as mass units per liter for bulk species and as mass per unit
area for surface species.

Example:

int n, s;
double c0;

//Open the EPANET & MSX toolkits
...

//Get initial concentration Of “CL2” in “Tank_A”
ENgetnodeindex(“Tank_A”, &n);
MSXgetindex(MSX_SPECIES, “CL2”, &s);
MSXgetinitqual(MSX_NODE, n, s, &c0);

 89

MSXgetqual

Declaration:
int MSXgetqual(int obj, int index, int species,

 double * value);

Purpose:

Retrieves a chemical species concentration at a given node or the average concentration
along a link at the current simulation time step.

Arguments:

obj is type of object being queried and must be either:
MSX_NODE (defined as 0) for a node
MSX_LINK (defined as 1) for a link;

index is the internal sequence number (starting from 1) assigned to the node or link;

species is the sequence number of the species (starting from 1 as listed in the MSX input
file);

value is returned with the computed concentration of the species at the current time
period.

Returns:

Returns an error code or 0 for no error.

Notes:

The EPANET toolkit functions ENgetnodeindex and ENgetlinkindex can be used
to identify the index of a node or link from its ID name;

Concentrations are expressed as mass units per liter for bulk species and as mass per unit
area for surface species.

Example:

//Declare some variables
long t, tstep;
int n, s;
double c, cMax = 0.0;

//Open the EPANET & MSX toolkits
...

 90

//Get the indexes of node “Tank_A” and species “CL2”
ENgetnodeindex(“Tank_A”, &n);
MSXgetindex(MSX_SPECIES, “CL2”, &s);

//Obtain a hydraulic solution
MSXsolveH();

//Run a step-wise water quality analysis
//without saving results to file
MSXinit(0);
do {
 err = MSXstep(&t, &tleft);

 //Retrieve CL2 concentration at Tank_A
 MSXgetqual(MSX_NODE, n, s, &c);

 //Update the max. concentration
 if (c > cMax) cMax = c;

} while (tleft > 0 && err == 0);

//Close the toolkits
...

 91

MSXgetconstant

Declaration:
int MSXgetconstant(int index, double * value);

Description:

Retrieves the value of a particular reaction constant.

Arguments:

index is the sequence number of the reaction constant (starting from 1) as it appeared in
the MSX input file;

value is returned with the value assigned to the constant.

Returns:

Returns an error code or 0 for no error.

Example:

//Declare some variables
int i;
double k1;

//Open the EPANET & MSX toolkits
...

//Get the index of the constant named K1
MSXgetindex(MSX_CONSTANT, “K1”, &i);

//Get the value of K1
MSXgetconstant(i, &k1);

 92

MSXgetparameter

Declaration:
int MSXgetparameter(int obj, int index, int param,

 double * value);

Description:

Retrieves the value of a particular reaction parameter for a given pipe or tank within the
pipe network.

Arguments:

obj is type of object being queried and must be either:
MSX_NODE (defined as 0) for a node
MSX_LINK (defined as 1) for a link;

index is the internal sequence number (starting from 1) assigned to the node or link;

param is the sequence number of the parameter (starting from 1 as listed in the MSX input
file);

value is returned with the value assigned to the parameter for the node or link of interest.

Returns:

Returns an error code or 0 for no error.

Notes:

Reaction parameters are only defined for storage tank nodes and pipe links. All other types
of nodes and links have parameter values of 0.

Example:

//Declare some variables
int i, j;
double k2;

//Open the EPANET & MSX toolkits
...

//Get the value of parameter “K2’ for pipe “P1”
ENgetlinkindex(“P1”, &i);
MSXgetindex(MSX_PARAMETER, “K2”, &j);
MSXgetparameter(MSX_LINK, i, j, &k2);

 93

MSXgetsource

Declaration:
int MSXgetsource(int node, int species, int * type,

 double * level, int * pat);

Description:

Retrieves information on any external source of a particular chemical species assigned to a
specific node of the pipe network.

Arguments:

node is the internal sequence number (starting from 1) assigned to the node of interest;

species is the sequence number of the species of interest (starting from 1 as listed in the
MSX input file);

type is returned with the type of external source and will be one of the following pre-
defined constants:

MSX_NOSOURCE (defined as -1) for no source,
MSX_CONCEN (defined as 0) for a concentration source,
MSX_MASS (defined as 1) for a mass booster source,
MSX_SETPOINT (defined as 2) for a setpoint source,
MSX_FLOWPACED (defined as 3) for a flow paced source;

The meaning of these source types can be found in the description of the [SOURCES]
section of the MSX input file in section 4 of this manual.

level is returned with the baseline concentration (or mass flow rate) of the source;

pat is returned with the index of the time pattern used to add variability to the source’s
baseline level (and will be 0 if no pattern was defined for the source).

Returns:

Returns an error code or 0 for no error.

 94

Example:

//Declare some variables
int n, s, t, p;
double c;

//Open the EPANET & MSX toolkits
...

//Get source information for species CL2 at node N1
ENgetnodeindex(“N1”, &n);
MSXgetindex(MSX_SPECIES, “CL2”, &s);
MSXgetsource(n, s, &t, &c, &p);

 95

MSXgetpatternlen

Declaration:
int MSXgetpatternlen(int pat, int * len);

Description:

Retrieves the number of time periods within a source time pattern.

Arguments:

pat is the internal sequence number (starting from 1) of the pattern as it appears in the
MSX input file;

len is returned with the number of time periods (and therefore number of multipliers) that
appear in the pattern.

Returns:

Returns an error code or 0 for no error.

Notes:

This function only applies to source time patterns that appear in the MSX input file. There
is a comparable EPANET toolkit function, ENgetpatternlen, which can be used for
the demand patterns defined in the EPANET input file.

Example:

//Declare some variables
int i, n;

//Open the EPANET & MSX toolkits
...

//Get the number of multipliers (n) in pattern “P1”
MSXgetindex(“P1”, &i);
MSXgetpatternlen(i, &n);

 96

MSXgetpatternvalue

Declaration:
int MSXgetpatternvalue(int pat, int period, double * value);

Description:

Retrieves the multiplier at a specific time period for a given source time pattern.

Arguments:

pat is the internal sequence number (starting from 1) of the pattern as it appears in the
MSX input file;

period is the index of the time period (starting from 1) whose multiplier is being sought;

value is returned with the value of the pattern’s multiplier in the desired period.

Returns:

Returns an error code or 0 for no error.

Notes:

This function only applies to source time patterns that appear in the MSX input file. There
is a comparable EPANET toolkit function, Engetpatternvalue, which can be used
for the demand patterns defined in the EPANET input file.

Example:

//Declare some variables
int i, n;

//Open the EPANET & MSX toolkits
...

//Get the number of multipliers (n) in pattern “P1”
MSXgetindex(“P1”, &i);
MSXgetpatternlen(i, &n);

 97

MSXgeterror

Declaration:
int MSXgeterror(int code, char * msg, int len);

Description:

Returns the text for an error message given its error code.

Arguments:

code is the code number of an error condition generated by EPANET-MSX;

msg is a C-style character string that is returned containing the text of the error message
corresponding to the error code;

len is the maximum number of characters that msg can contain.

Returns:

Returns an error code or 0 for no error.

Notes:

msg should be sized to accept a minimum of 80 characters.

This function only applies to error codes generated by the MSX toolkit. There is a
comparable EPANET toolkit function, ENgeterror, that applies to EPANET errors.

Example:

char msg[81];

//Open the EPANET toolkit & check for errors
int err = Enopen(“example1.inp”, “example1.rpt”, “”);
if (err > 0) ENgeterror(err, msg);

//Open the MSX toolkit & check for errors
else {
 err = MSXopen(“example1.msx”);
 if (err > 0) MSXgeterror(err, msg);
}
if (err > 0) printf(“\n%s”, msg);
return err;

 98

MSXsetconstant

Declaration:
int MSXsetconstant(int index, double value);

Description:

Assigns a new value to a specific reaction constant.

Arguments:

index is the sequence number of the reaction constant (starting from 1) as it appeared in
the MSX input file;

value is the new value to be assigned to the constant.

Returns:

Returns an error code or 0 for no error.

Example:

//Declare an index variable
int i;

//Open the EPANET & MSX toolkits
...

//Get the index of the constant named K1
MSXgetindex(MSX_CONSTANT, “K1”, &i);

//Set a new value of K1
MSXsetconstant(i, 0.53);

 99

MSXsetparameter

Declaration:
int MSXsetparameter(int type, int index, int param,

 double value);

Description:

Assigns a value to a particular reaction parameter for a given pipe or tank within the pipe
network.

Arguments:

type is type of object being queried and must be either:
MSX_NODE (defined as 0) for a node
MSX_LINK (defined as 1) for a link;

index is the internal sequence number (starting from 1) assigned to the node or link;

param is the sequence number of the parameter (starting from 1 as listed in the MSX input
file);

value is the value to be assigned to the parameter for the node or link of interest.

Returns:

Returns an error code or 0 for no error.

Notes:

Reaction parameters are only defined for storage tank nodes and pipe links. Attempts to set
parameter values for other types of nodes and links will be ignored.

Example:

//Declare some index variables
int i, j;

//Open the EPANET & MSX toolkits
...

//Get indexes for parameter “K2’ for pipe “P1”
ENgetlinkindex(“P1”, &i);
MSXgetindex(MSX_PARAMETER, “K2”, &j);

//Set a new value for the parameter
MSXsetparameter(MSX_LINK, i, j, 0.25);

 100

MSXsetinitqual

Declaration:
int MSXsetinitqual(int type, int index, int species,

 double value);

Description:

Assigns an initial concentration of a particular chemical species to a specific node or link of
the pipe network.

Arguments:

type is type of object being queried and must be either:
MSX_NODE (defined as 0) for a node
MSX_LINK (defined as 1) for a link;

index is the internal sequence number (starting from 1) assigned to the node or link;

species is the sequence number of the species (starting from 1 as listed in the MSX input
file);

value is the initial concentration of the species to be applied at the node or link of interest.

Returns:

Returns an error code or 0 for no error.

Notes:

The EPANET toolkit functions ENgetnodeindex and ENgetlinkindex can be used
to identify the index of a node or link from its ID name;

Concentrations are expressed as mass units per liter for bulk species and as mass per unit
area for surface species.

 101

Example:
//Declare some index variables
int n, s;

//Open the EPANET & MSX toolkits
...

//Get the indexes of node “Tank_A” and species “CL2”
ENgetnodeindex(“Tank_A”, &n);
MSXgetindex(MSX_SPECIES, “CL2”, &s);

//Then set the initial concentration
MSXsetinitqual(MSX_NODE, n, s, 1.25);

 102

MSXsetsource

Declaration:
int MSXsetsource(int node, int species, int type,

 double level, int pat);

Description:

Sets the attributes of an external source of a particular chemical species to a specific node of
the pipe network.

Arguments:

node is the internal sequence number (starting from 1) assigned to the node of interest;

species is the sequence number of the species of interest (starting from 1 as listed in the
MSX input file);

type is the type of external source to be utilized and will be one of the following pre-
defined constants:

MSX_NOSOURCE (defined as -1) for no source,
MSX_CONCEN (defined as 0) for a concentration source,
MSX_MASS (defined as 1) for a mass booster source,
MSX_SETPOINT (defined as 2) for a setpoint source,
MSX_FLOWPACED (defined as 3) for a flow paced source;

The meaning of these source types can be found in the description of the [SOURCES]
section of the MSX input file in section 4 of this manual.

level is the baseline concentration (or mass flow rate) of the source;

pat is the index of the time pattern used to add variability to the source’s baseline level
(use 0 if the source has a constant strength).

Returns:

Returns an error code or 0 for no error.

Notes:

The EPANET toolkit function ENgetnodeindex can be used to identify the index of a
node from its ID name;

Concentrations are expressed as mass units per liter for bulk species and as mass per unit
area for surface species.

 103

Example:
//Declare some index variables
int n, s;

//Open the EPANET & MSX toolkits
...

//Get indexes for species CL2 and node N1
ENgetnodeindex(“N1”, &n);
MSXgetindex(MSX_SPECIES, “CL2”, &s);

//Assign a constant source strength of 1 mg/L
MSXsetsource(n, s, MSX_SETPOINT, 1.0, 0);

 104

MSXsetpattern

Declaration:
int MSXsetpattern(int pat, double mult[], int len);

Description:

Assigns a new set of multipliers to a given MSX source time pattern.

Arguments:

pat is the internal sequence number (starting from 1) of the pattern as it appears in the
MSX input file;

mult[] is an array of multiplier values to replace those previously used by the pattern;

len is the number of entries int the multiplier array mult.

Returns:

Returns an error code or 0 for no error.

Notes:

This function only applies to source time patterns that appear in the MSX input file. There
is a comparable EPANET toolkit function, ENsetpattern, which can be used for the
demand patterns defined in the EPANET input file.

Example:
//Declare an array of multipliers
double mult[6] = {1.1, 1.5, 0.8, 0.5, 0.2, 0.0};
int i;

//Open the EPANET & MSX toolkits
...

//Get index for pattern “P1”
MSXgetindex(MSX_PATTERN, “P1”, &i);

//Assign multipliers to the pattern
MSXsetpattern(i, mult, 6);

 105

MSXsetpatternvalue

Declaration:
int MSXsetpatternvalue(int pat, int period, double value);

Description:

Assigns a new value to the multiplier for a specific time period in a given MSX source time
pattern.

Arguments:

pat is the internal sequence number (starting from 1) of the pattern as it appears in the
MSX input file;
 period is the time period (starting from 1) in the pattern to be replaced;
value is the new multiplier value to use for that time period.

Returns:

Returns an error code or 0 for no error.

Notes:

This function only applies to source time patterns that appear in the MSX input file. There
is a comparable EPANET toolkit function, ENsetpatternvalue, which can be used for
the demand patterns defined in the EPANET input file.

Example:
//Declare some variables
int i, p, n;
double v;

//Open the EPANET & MSX toolkits
...

//Get index & number of multipliers for pattern “P1”
MSXgetindex(MSX_PATTERN, “P1”, &p);
MSXgetpatternlen(p, &n);

//Increase each multiplier by factor of 2
for (i = 1; i <= n; i++) {
 MSXgetpatternvalue(p, &v);
 v = 2.0 * v;
 MSXsetpatternvalue(p, i, v);
}

 106

MSXaddpattern

Declaration:
int MSXaddpattern(char * id);

Description:

Adds a new, empty MSX source time pattern to an MSX project

Arguments:

id is a C-style character string containing the name of the new pattern.

Returns:

Returns an error code or 0 for no error.

Notes:

The new pattern has no time periods or multipliers assigned to it. The MSXsetpattern
function can be used to assign an array of multipliers to the pattern.

Example:
//Declare some variables
int err, p;
double mult[6] = {0.5, 0.8, 1.2, 1.0, 0.7, 0.3};

//Create a new pattern named “newPat”
err = MSXaddpattern(“newPat”);

//Assign multipliers to it
if (err == 0) {
 MSXgetindex(MSX_PATTERN, “newPat”, &p);
 MSXsetpattern(p, mult, 6);
}

 107

APPENDIX B. BINARY OUTPUT FILE FORMAT

The EPANET-MSX system can save the water quality results it computes to a binary output file.
This file can be named and saved to disk using the MSXsaveoutfile function. The format of the
file’s contents is described in Table B-1 below.

Table B-1 Format of the EPANET-MSX binary output file.

Quantity Size and Type
Magic number (516114521) 4-byte integer
Version number (currently 100000) 4-byte integer
Number of network nodes 4-byte integer
Number of network links 4-byte integer
Number of water quality species 4-byte integer
Reporting time step (seconds) 4-byte integer

For each water quality species:
 Number of characters in ID name (N) 4-byte integer
 ID name N character bytes
 Species units 15 character bytes

For each reporting period:

 For each water quality species:
 For each network node:
 Nodal water quality result 4-byte float

 For each water quality species:
 For each network link
 Link water quality result 4-byte float

Byte offset where water quality results begin 4-byte integer
Number of reporting periods 4-byte integer
Error code 4-byte integer
Magic number (516114521) 4-byte integer

 108

This page intentionally blank.

 109

APPENDIX C. MSX ERROR CODES

Error 200: Cannot read EPANET-MSX file.

One or more errors were found when processing the MSX input file. See the
report output file for details.

Error 501: insufficient memory available.
There is not enough physical memory in the computer to analyze the pipe
network.

Error 502: no EPANET data file supplied.
A standard EPANET input was not opened with a call to ENopen before the
MSX system was opened with MSXopen.

Error 503: could not open MSX input file.
The MSX input file does not exist or cannot be opened (i.e., it may be in use by
another program).

Error 504: could not open hydraulic results file.
The hydraulic results file specified in the MSXusehydfile function either does
not exist or cannot be opened.

Error 505: could not read hydraulic results file.
The hydraulic results file generated by the MSXsolveH function or imported by
the MSXusehydfile function could not be read correctly. This could happen if,
for example, an imported file was not actually a hydraulic results file.

Error 506: could not read MSX input file.
The contents of the MSX input file were formatted incorrectly or had other errors
(such as duplicate ID names for objects of the same type). The specific errors and
the offending lines will be listed in the report file named when calling the
ENopen function.

Error 507: too few pipe reaction expressions.
The total number of Rate, Equilibrium, and Formula expressions in the [PIPES]
section of the MSX input file must equal the total number of species defined.

Error 508: too few tank reaction expressions.
The total number of Rate, Equilibrium, and Formula expressions in the [TANKS]
section of the MSX input file must equal the total number of bulk species defined.

Error 509: could not open differential equation solver.
The system’s differential equation solver could not be opened, possibly because of
insufficient memory available.

 110

Error 510: could not open algebraic solver.

The system’s nonlinear equation solver could not be opened, possibly because of
insufficient memory available.

Error 511: could not open binary results file.
The binary output file where EPANET-MSX stores its computed results could not
be opened or does not exist.

Error 512: read/write error on binary results file.
An error occurred when either writing a result to the binary results file or reading
a result from the file.

Error 513: could not integrate reaction rate expressions.
The differential equation solver employed by EPANET-MSX could not
successfully integrate the system’s reaction rate equations over the current water
quality time step. One could try re-running the analysis using a smaller time step
or larger values for ATOL and RTOL (as specified in the [OPTIONS] or
[SPECIES] sections of the MSX input file).

Error 514: could not solve reaction equilibrium expressions.
The nonlinear equation solver employed by EPANET-MSX could not successfully
solve the system’s set of equilibrium equations at the current simulation time.
Users must insure that the initial conditions set throughout the pipe network are
sufficient and consistent so that a solution exisits for the governing set of
equilibrium equations.

Error 515: reference made to an unknown type of object.
The object type code number supplied as an argument in one of the MSX toolkit
functions does not equal any of the predefined code numbers.

Error 516: reference made to an illegal object index.
The object index number supplied as an argument in one of the MSX toolkit
functions is either <= 0 or higher than the number of objects of the type of being
referenced.

Error 517: reference made to an undefined object ID.
The object ID name supplied as an argument in one of the MSX toolkit functions
does not belong to any object defined in the MSX input file.

Error 518: invalid property values were specified.
An invalid value was supplied as an argument to one of the MSX toolkit functions
that modifies a specific property of an object (e.g., an initial or source
concentration cannot be a negative value).

 111

Error 519: an MSX project was not opened.

A call was made to an MSX toolkit function without having first successfully
opened a project with the MSXopen function.

Error 520: an MSX project is already opened.
A call was made to open an MSX project without having first closed a currently
opened project with the MSXclose function.

This page intentionally left blank.

SC
IEN
CE

Office of Research and Development
National Homeland Security Research Center
Cincinnati, OH 45268

Official Business
Penalty for Private Use
$300

PRESORTED STANDARD
POSTAGE & FEES PAID

EPA
PERMIT NO. G-35

United States
Environmental Protection
Agency

EPA 600/S-07/021 | Revised January 2008 | www.epa.gov/ord

	Table of Contents
	Introduction
	Conceptual Framework
	Program Usage
	Input File Format
	Example Reaction Systems
	References
	Appendix A
	Appendix B
	Appendix C

