
or
s used
and

alyze

ar
Finite-Element Model for Modified Boussinesq Equations.
II: Applications to Nonlinear Harbor Oscillations

Seung-Buhm Woo1 and Philip L.-F. Liu2

Abstract: The finite-element model for modified Boussinesq equations developed in Part I of this paper is used to study harb
resonance problems. The internal wavemaker technique is implemented on an unstructured finite-element mesh, and a sponge layer i
as an open boundary condition. Both linear and nonlinear harbor oscillations in rectangular and circular basins are examined,
experimental measurements and analytical solutions are used to validate the model. Finally, the wavelet transform is employed to an
transient features of the nonlinear resonance problem.
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Introduction
Harbor resonance is the phenomenon of trapping and amplifi
tion of wave energy inside a semienclosed water body, such a
harbor or bay. If wave motions inside a harbor are forced to occ
at one or more of the natural frequencies of the harbor, wh
depend on the harbor configuration, the amplitudes of harbor
cillations will become large and could create unacceptable ves
movements and excessive mooring forces, leading to the break
of mooring lines. In designing a new harbor or modifying a
existing one, it is essential to have a good understanding of
natural frequencies of the harbor and the possible sources of f
ing for harbor resonance. Moreover, a model, either numerica
physical, should be used to examine the temporal and spa
variations of wave amplitudes inside the proposed harbor un
design wave conditions.

For a simple harbor geometry with constant depth, the natu
frequencies and corresponding free-surface oscillations can
predicted analytically. However, for more complex harbor geom
etry, transient excitations, and cases where nonlinear effects
important, the harbor response can be determined only from
periments conducted in a hydraulic model or with a numeric
model. Although the usefulness of conducting a hydraulic mod
study should never be underestimated, there are several lim
tions. First, it is costly to construct and modify the hydraul
model to collect data for a long duration with a fine spatial res
lution, and second, scaling the hydraulic model is also difficu
when both short waves and infragravity waves are of intere
Therefore, research efforts focused on the development of
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merical models for calculating the harbor oscillations induced b
nonlinear transient waves are essential.

Several existing numerical models could be used to calcula
harbor oscillations. Using the linear mild-slope equation, severa
research groups have developed various finite-element mode
~FEM!, for example, Chen and Mei~1974!, Tsay and Liu~1983!,
Xu et al.~1996!, Jeong~1999!, and Panchang et al.~2000!. These
models calculate linear monochromatic wave oscillations in har
bors of arbitrary configuration and variable bathymetry. The ef
fects of bottom friction and boundary absorption~partial reflec-
tion! are usually included. These models, which use a hybri
element solution method that combines analytical~in the offshore
area! and finite-element numerical~near and inside the harbor!
solutions to determine harbor responses to small-amplitude wav
with a single wave frequency, are an extension of the origina
model for linear shallow-water equations developed by Chen an
Mei ~1974!.

Because of their simplicity, these models have been used fo
assessing design or modification of existing harbors@for example,
Lillycrop et al. ~1993!; Panchang et al.~2000!#. However, the
most serious drawback of these models is the limitation of usin
linear theory, since they cannot be used to investigate harbor o
cillations induced by nonlinear transient waves.

Lepelletier~1980! developed an FEM for solving conventional
Boussinesq equations~CBEs! @see also Lepelletier and
Raichlen~1987!#. The model includes several dissipative effects
such as bottom friction and entrance losses, and a time-varyin
radiation condition at a finite distance from the harbor entrance
used to simulate open sea conditions. Since the model emplo
CBEs, the water depth must remain small relative to the wave
length in the entire domain of interest, including the offshore
region. Therefore this model is not suitable for studying problem
where incident waves consist of short wave components, whic
could be responsible for generating bound and free infragravit
waves that could be resonated near and inside the harbor.

To include the short wave components, modified~or extended!
Boussinesq equations~MBEs! have been intensively studied in
recent years. Among these, Nwogu’s~1993! MBEs have been
widely used for various physical problems. The MBEs are appli
cable to waves whose lengths are about twice the water depth.
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In Part I of this paper, Woo and Liu~2004! developed an FEM
for Nwogu’s MBEs using the Galerkin method with linear ele-
ments. Auxiliary variables are introduced to reduce the third-orde
spatial derivatives in the governing equations to second order, a
five matrix equations are constructed and solved using th
predictor-corrector time-integration procedure with appropriat
boundary conditions. The model has been verified by checkin
the numerical results with various known analytical solutions an
experimental data.

This paper uses the FEM developed by Woo and Liu~2004! to
study harbor oscillations, focusing especially on nonlinear supe
and subharmonic generation through resonant interactions. A
though several FDMs/FEMs exist for the MBEs~Nwogu 1993;
Wei and Kirby 1995; Li et al. 1999; Walkley and Berzins 2002!,
to the writers’ knowledge, computational results have not bee
published for the nonlinear harbor resonance problem. The ma
objective of this paper is to investigate the model performance f
the nonlinear properties of harbor oscillation and compare it wit
existing theoretical/experimental data. An internal wavemaker
implemented inside the computational domain and a sponge lay
is installed in the open ocean so that both incident wave gene
tion and radiated waves are treated accurately.

Since the present FEM is a time domain model, the tempor
variation of the physical system can be represented. It is intere
ing to examine the rate of energy transfer between different ha
monic components in time. The wavelet transform technique
used to analyze the transient feature of the harbor resonance.

The next section describes the internal wavemaker embedd
in an unstructured mesh. Then the section on linear oscillatio
first applies the model to the classical problem of linear resonan
in a rectangular bay, and then, to test a more generally shap
harbor, studies the linear resonant responses of a circular harb
The succeeding section on nonlinear oscillations first discuss
resonant excitation in a rectangular bay and then presents wa
group-induced harbor resonance. We end the paper with som
concluding remarks.

Wave Generation inside Domain

Proper treatment of incident wave generation and radiation
outgoing waves is critical to ensuring the accuracy of any harb
oscillation model. Within the framework of linear wave theory,
the total wave field is the sum of incident waves and radiate
waves, and therefore only the radiated wave field needs to
solved. For a nonlinear problem, however, the incident and rad
ated waves generated inside the computational domain cannot
separated. The problem of generating incident and radiating o
going waves at the boundary at the same time becomes diffic
but can be solved approximately by using a source functio
method; that is, the target waves are generated inside the com
tational domain, whereas the radiated waves are absorbed in
sponge layer located in the outer boundary of the domain.

Source Function Method

Under the linear theory assumption, Wei et al.~1999! presented a
source function for the MBEs that relates source function magn
tude to the target surface wave characteristics. The source term
added either to the continuity equation or to the momentum equ
tions. This idea was implemented in their finite-difference mode

The same methodology is adopted in the present FEM.
source functionFw

h is added to the continuity equation. Assuming
18 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEE
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that the water depth is constant and the center of the source regio
is parallel to they-axis, the source function can be written as
follows ~Wei et al. 1999!:

Fw
h~x,y,t !5D sin@k sin~uw!y2vt#exp@2g~x2xw

s !2# (1)

where D5magnitude of source function;k5wave number;
v5wave frequency;g5parameter associated with width of
source function;xw

s 5x-coordinate of central location of source
region; anduw5angle between propagation direction of the wave
and thex-axis. For a monochromatic wave or single component of
irregular waves, the source magnitudeD can be determined by

D5
2h0~v22gC6k4h3!cos~uw!

vkI@12C5~kh!2#
(2)

whereC5 , C65constants shown in Part I of this paper@Woo and
Liu ~2004!#, that is, C55b(b/211); C65C511/3; b5za /h;
and I5integral constant given by

I 5Ap

g
expS 2

~k cosuw!2

4g D (3)

Note that the width of the source function should be as narrow as
possible, since the assumption of a linearized governing equatio
and constant water depth in the source region is made in deriva
tion of the source function. On the other hand, enough grid points
are needed in this region to generate the target waves. As a resu
the choice of theg value is decided by these two factors. The
typical values ofg used in the present model are in the range of
80/l2– 320/l2 ~l5wavelength! corresponding to a source func-
tion width that is about 0.25–0.5 times the wavelength.

To apply the source function in the present FEM, it is approxi-
mated as a linear combination of shape functions and the noda
values ofFw

h(x,y,t):

Fw
h~x,y,nDt !.(

j 51

ND

c j~x,y!$Fw
h% j

n (4)

whereND5total number of nodes; andc j(x,y)5shape function.
At each predictor step, the nodal values of$Fw

h% j
n are calculated

and the global forcing vector is formulated. This global vector is
used continuously in the iterative corrector step.

The region in which the source function is applied is decided
based on the coordinate of the element centroid. Therefore th
actual boundary of the source region on the unstructured mesh i
irregular, as shown in Fig. 1. However, since the intensity of the
source function is reduced exponentially in the source region, this
irregularity does not affect the accuracy of the target wave gen-
eration.

To verify the accuracy of the source function method, we use
the model to generate monochromatic waves. The target wave ha
an amplitude of 0.025 m, a wave length of 2.5 m, and a wave
period of 1.27 s. The computational domain is (x,y)P@0,30#
3@0,0.1# m with a constant water depth of 1 m. The center of the
source region is located atx515, yP@0,0.1# m, and two sponge
layers of 5 m width are placed at both ends of the domain. The
computational domain is composed of 842 nodes and 1,120 ele
ments over an unstructured triangular mesh so that the wave i
resolved with approximately 20 nodes per wavelength. The time
step ofDt50.025 s is used, and the source region width is about
1 m.

Fig. 2 shows side-view snapshots of surface elevation at vari
ous times. The waves are generated at the source region and th
propagate toward the ends of the domain. The sponge layer thick
RING © ASCE / JANUARY/FEBRUARY 2004
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Fig. 1. Schematic diagram for source region and wave propagatio
direction

Fig. 2. Side views of internally generated free-surface elevation o
periodic wave
JOURNAL OF WATERWAY, PORT, COASTAL AN
ness is roughly 1.5 times the target wavelength, and sponge layers
at both ends dissipate wave energy quite effectively. The model
runs for 20 wave periods without any instability problem. The
numerical solutions are compared with the analytic solution
~which is plotted in circles! in Fig. 2~c!. The agreement is quite
good, indicating that both the internal generation of waves and the
sponge layer are performing accurately.

Linear Oscillations

To evaluate the range of applicability of the present FEM, reso-
nant responses of simply shaped harbors to periodic small-
amplitude incident waves are first examined, and the simulation
results are then compared with the existing experimental/
theoretical data. Scaling of the domain size is usually used in this
study to avoid the possible round-off error that can be generated
at a very small element.

Resonance in Rectangular Bay

In this section, we consider the classical problem of resonance in
a narrow rectangular harbor where the harbor width is much
smaller than the harbor length. The wavelength of the incoming
wave is much larger than the harbor length and the wave ampli-
tude over water depth ratio is very small, so that the harbor re-
sponse is linear.

Laboratory experiments were carried out by Ippen and Goda
~1963! and Lee~1971!. The dimensions used in the experiments
are harbor width50.0604 m, length50.3111 m, and depth
50.2572 m. Laboratory data were collected at the center of the
back wall of the harbor.

Fig. 3 shows the computational domain used in the present
simulation. Due to symmetry, only the upper half of the domain is
used for the computation so that the corresponding open boundary
shape is a quarter circle. Note that the shape of the open boundary
can be arbitrary due to the present combination of internal wave-
maker and sponge layer. Compared with the FEM, based on a
mild-slope equation in which the shape of the outer boundary
should be circular so that a large amount of elements need to be
used in the open ocean, the arbitrary shape of the open boundary
could help reduce the computational cost considerably.

The computation was performed for a harbor with width53.02
m, length531.11 m, and depth525.72 m, representing a 1:100
prototype for the experiment setup of Ippen and Goda~1963!. The
computational domain consists of 1,893 nodes and 3,592 triangu-

Fig. 3. Finite-element mesh for Ippen and Goda’s~1963! experiment
D OCEAN ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 19
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lar elements. The element size gradually increases towardGW
E ,

which is the location of the open boundary, so that the length o
the boundary element onGW

E is around 20 times larger than the
one near the harbor entrance. For the sponge layer, the center
the radiation (xc) is set at (x,y)5(0,0), and the starting position
of the sponge layer (GS) is 180 m. The center of the internal
wave-generation region is located atx52150 m, and the area of
the source region is (x,y)P@2165,2145#3@0,150# m.

Fig. 4 shows snapshots of the free-surface elevation, which
normalized by the target wave height at different times. The in
coming wavelength is 148 m, and the corresponding wave num
ber parameter (kL), defined as the wave number times the harbo
length, is 1.32. The laboratory experiments showed that the fun
damental resonant mode occurs at this wave frequency. The in
dent wave amplitude is 0.33 m according to the experimenta
data, so that the nonlinearity is quite small (a/h50.01).

One of the most important factors in modeling harbor reso
nance problems is the absorption of radiated waves from the ha
bor. As is clearly seen, the sponge layer can effectively absor
radiated waves. Relatively large elements are used in the spon
layer ~roughly 20 nodes in the sponge layer alongy50), which
reduces the large computational cost associated with the necess
for a relatively thick sponge layer~;1.5 times the wavelength!.

Numerical simulations are performed for a range ofkL values.
The range covers the first resonant peak shown in the laborato
experiments. The numerical results indicate that the amplificatio
factor atkL51.32, which is near the fundamental resonant fre
quency of the harbor, is around 7. On the other hand, Ippen an
Goda~1963! showed that the linear theory overpredicts the am
plification, that is, as almost 8. WhenkL52, the amplification
factor is almost 1, and other cases show that the factor is betwe
1 and 5. The quasi-steady state can be reached within 10 wa
periods in all cases, although there are modulation periods fo
some cases.

Fig. 5 compares the present numerical results with experime
tal data and linear theory. The agreement is quite good exce
near the resonant frequency, which could be due to the effect o

Fig. 4. Snapshots of free-surface elevation for wave with wavelengt
of 148 m (kL51.32)
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the physical experiments of several energy dissipation mecha-
nisms, such as entrance loss and bottom friction, which are not
considered in the present numerical model.

Resonance in Circular Bay

To ensure that the present model can be applied to an arbitrarily
shaped harbor, a simulation is performed for the harbor resonance
in a circular harbor, and the simulation results are compared with
the experimental data and analytic solutions~Lee 1971!. Triangu-
lar unstructured elements are used to fit the circular boundary of
the harbor, and the influence of the mesh quality on the efficiency
and accuracy of numerical solutions is investigated.

Lee ~1971! carried out laboratory experiments on harbor oscil-
lations in a circular harbor with constant depth. In these experi-
ments, the radius of the circular harborR is 0.2286 m, and the
constant depth is 0.3048 m. Two types of circular harbors were
used, one with a 10° opening and the other with a 60° opening.
The amplification factors at fixed points inside the harbor were
measured as a function of wave-number parameter, defined as
kR. One of the fixed points is located at the center of the harbor
~denoted as P1!, and the other is located at a distance of 0.213 m
from the center with an angle of 45°~denoted as P2!. The loca-
tions of P1 and P2 are indicated in Fig. 6~b!.

The numerical model is applied only to the case with a 60°
opening. Fig. 6 shows the computational domain used in the nu-
merical simulation. The total number of elements is 8,358, and
the total number of nodes is 4,302. In the simulation, a radius of
21 m and a depth of 28 m are used, representing a 1:91 prototype
of the experiment setup. Since the incoming wave direction is
normal to the harbor, only one-half of the domain is used.

The velocity gradient near the sharp edge at the tip of the
harbor entrance is too high to be adequately represented by the
linear interpolating functions adopted in the present model. To
avoid this singularity problem, the sharp edge is rounded, and a
mesh with a high resolution near the harbor mouth is employed
@Fig. 6~b!#.

The source region for the internal wavemaker is (x,y)P
@2150,2130#3@0,150# m. The incident wavelength varies from
386 to 87 m, corresponding tokR values from 0.35 to 1.5, re-
spectively. For the location of the sponge layer,xc5(0,0) and
GS5150 m.

Fig. 5. Comparison of amplification factor at end of rectangular
harbor: present numerical solution~ddd!; Ippen and Goda’s~1963!
experiment~333!; Lee’s experiment~111!; linear theoretical so-
lution ~ • • • !
ING © ASCE / JANUARY/FEBRUARY 2004



in

m
th
d
g

ue

in
a
h
e

e’
n
-
th
h
h

d

h
n

u
rb

the whole domain.
The snapshots of the free surface at its maximum and m
mum elevation forkR51.1 is shown in Fig. 7. The whole free
surface in the harbor moves up and down, showing behavior si
lar to that of the fundamental resonant mode. We remark here
if the original sharp edge boundary and a coarse mesh are use
the harbor mouth, noticeable high-frequency oscillations emer
and a large number of iterations~sometimes more than 25! are
required to obtain converged solutions. This is particularly tr
for kR.1.2.

At the center point~P1!, a quasi-steady state is reached with
4–5 wave periods. It takes a longer time to reach a quasi-ste
state at P2, which is located closer to the harbor mouth. T
pattern of reaching a quasi-steady state is similar for all wav
tested in the present simulation.

Fig. 8 compares the present numerical solutions with Le
~1971! experimental data and linear theoretical solutions a
Jeong’s~1999! numerical solution of the FEM based on mild
slope equations. At both P1 and P2, the general variation of
amplification factor is well represented by the present model. T
amplification factor at the first resonant peak agrees well with t
model results and experimental data. Jeong’s~1999! FEM solu-
tion, where the partial reflective boundary condition is employe
agrees well with the measured data even whenkR.1.0. The
present model does not include any energy dissipation mec
nism, and askR increases, the difference between the prese
solutions and the experimental data grows. This difference co
also be caused by the boundary modification made at the ha
mouth.

Fig. 6. Finite-element mesh for Lee’s~1971! experiment
JOURNAL OF WATERWAY, PORT, COASTAL A
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Nonlinear Oscillations

Resonance Generation of Superharmonics

Rogers and Mei~1978!, hereafter referred to as RM, investigated
the nonlinear resonant excitation in a long and narrow bay. They
used the CBEs inside the bay and the linear wave theory outside
the bay so that the nonlinear problem inside the bay is decoupled
from the problem in the ocean. The resulting 1D nonlinear, two-
point boundary value problem inside the bay was solved numeri-
cally in the frequency domain. Experiments were also performed
for a fixed frequency and three different bay lengths, which cor-
respond to the first three resonant modes, respectively.

RM’s numerical results for the second and third harmonics
deviate significantly from experimental data. One reason for these
differences could be that their experiments were performed in the
intermediate depth condition,m250.257, which is beyond the
range of validity of the CBEs. Another reason could be that the
assumption of linearizing the wave field outside the bay might not
be accurate. Nevertheless, their work was the first rigorous study
that investigated the importance of nonlinearity and dispersion in
the harbor oscillation problem.

The present numerical model provides two important improve-
ments to RM’s approach. First, the governing equations adopted
here provide a wider range of validity than the CBEs so that the
dispersion parameter for RM’s experiments is within the accuracy
of the present model. Second, the nonlinear theory is applied to

Fig. 7. Snapshots of free-surface elevation for circular bay (kR
51.1)
ND OCEAN ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 21
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RM performed experiments for three bays of length 1.211
4.173, and 7.136 ft, hereafter referred to as Bay 1, Bay 2, and B
3, respectively. Since the wave system was nonlinear, RM expe
mentally determined those bay lengths by producing the first thr
resonant peaks. The wavemaker, located at a distance of 31
from the bay mouth, generates waves with a wave period of 1.5
s. A constant water depth of 6 in. was used, and the correspond
wavelength was about 6 ft; three incident wave amplitudes we
tested for each bay.

RM’s physical experiments first measured the amplitude of th
standing waves at the bay mouth with the bay completely close
From these measurements the harmonic amplitudes and ph
differences were calculated and used as the boundary condit
for their numerical calculations for the wave field inside the bay
RM noted that in their theory and experiments the zeroth ha
monic was assumed to be small and was removed from the Fo
rier analysis.

To compare the present numerical results with RM’s exper
ments, we need to follow the experimental procedure exactl
However, the limitation of the computational resources makes
necessary to use a smaller domain and place the wavemaker m
closer to the bay than in RM’s experiments.

Fig. 9~a! shows the computational domain for Bay 3, whose
shape is similar to the one shown in the previous section. Agai
since the problem is symmetric with respect to they-axis, only a
half domain is used for computations. The physical dimensions
the rectangular bay are a width of 0.5 m, a length of 21.75 m, an
a depth of 1.525 m. This represents a 1:10 prototype of RM’s Ba
3 experimental setup. In Fig. 9~b!, the automatic mesh generator
causes the mesh refinement in some areas in a bay. To avoid
singular behavior at the corner of the harbor mouth, the edge

Fig. 8. Comparison of amplification factor at two points in a circular
harbor: present numerical solution~ddd!; Lee’s ~1971! experiment
~333!; mild slope FEM ~111! ~Jeong 1999!; linear theoretical
solution ~• • •!
22 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEER
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the bay mouth is rounded. It will later be shown that the numeri-
cal solution in the bay is only slightly affected by this modifica-
tion of the bay mouth.

The center of the numerical internal wavemaker is located at
x5218 m, and the wavemaker source region is (x,y)P@220,
216#3@0,20# m. The target wave generated in the internal wave-
maker is chosen in such a way that the harmonic amplitudes
calculated at (x,y)5(0,0) with the bay mouth closed are the
same as RM’s measurements. Two target wave components are
found sufficient to reproduce RM’s measurements: the first has a
wave amplitude of 0.035 m and a wavelength of 18.3 m, with a
corresponding wave period of 4.9 s; and the second has a wave
amplitude of 0.01 m and a wavelength of 7.9 m, with a wave
period of 2.45 s.

For the sponge layer, the center of the radiation is located at
xc5(0,0), and the starting position of the sponge layer isGS

5180 m. There are 3,825 nodes and 7,200 elements in the com-
putational domain and around 4 elements across the bay, and the
element size gradually increases toward the boundaryGW

E in the
ocean. The size of the element nearGW

E is more than 10 times
larger than the one near the harbor mouth.

Fig. 10 shows the overall view of the snapshots of free-surface
elevation at different times for the case of Bay 3. Fig. 10~a! is at
t515.2 s, and the response of the bay has not been fully devel-
oped. As time goes on, certain natural frequencies of the bay are
resonated, and the amplified surface elevation is clearly shown in
Figs. 10~b–c!. It is also evident that the sponge layer effectively
damps out the reflected and radiated outgoing waves. Although
the elementwise small oscillations, whose amplitude is less than
0.001 m, are generated at the harbor mouth, they do not affect the
numerical solutions in time and space. There is no visible free-
surface variation across the bay, which is consistent with RM’s
observation in the experiments.

Fig. 9. Finite-element mesh for Rogers and Mei’s~1978! experiment
ING © ASCE / JANUARY/FEBRUARY 2004
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To verify if the system has reached a quasi-steady state, th
time history of free-surface elevation at different locations is plot
ted in the left panels in Fig. 11. The time series shows a quit
different pattern of free surface movement at different locations
In front of the harbor entrance@x5~24,0!#, the free-surface os-
cillation is very small for all time, indicating that there is a node.
As shown in Figs. 11~b–e!, the higher harmonic components start
to emerge in the bay. Because of the standing-wavelike motion
in the bay, each location reveals a different pattern of free-surfac
fluctuations. Figs. 11~b and d! show the antinodes for the first
harmonic, while Figs. 11~c and e! demonstrate the nodes. These
plots also show an initial modulation period before the system
reaches a quasi-steady state, similar to the linear system in t
previous section. These modulations are most obviously observ
at the inner locations of the bay@Figs. 11~d and e!#, and a quasi-
steady state is reached at aroundt5150 s.

The characteristics of free-surface oscillations at different lo
cations can also be revealed in terms of spectral components. T
right panels of Fig. 11 show the amplitude spectra normalized b
the water depth at the same location as the one in the left pane
Using the fast Fourier transform~FFT!, the amplitude spectra are
obtained for around 15 wave periods,tP@150,225# s. The first
harmonic component corresponds to 0.2 Hz, which is very clos
to one of the incoming wave frequencies, and the second an
third harmonic components are 0.4 and 0.6 Hz, respectively. A
expected, near the harbor mouth,x5~24,0!, all harmonic compo-
nents are very small. The spectra atx5~2.4,0! and x5~12.5,0!
@Figs. 11~b and d!# represent the generation of higher harmonic

Fig. 10. Snapshots of free-surface elevation for Rogers and Mei’
~1978! experiment
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components with the corresponding reduction in the magnitude of
the first harmonic. On the other hand, Figs. 11~c and e! show that
the magnitude of the higher harmonics is even larger than that of
the first harmonic. Especially atx5~17.2,0! @Fig. 11~e!#, the sec-
ond harmonic amplitude is greatly amplified, which is in accord
with RM’s observation that the secondary resonance peak is de-
veloped through nonlinear interactions.

Note that the zeroth harmonic amplitude at certain locations is
not entirely zero. The largest value is around 0.02, which occurs
when the first harmonic is weak@Figs. 11~c and e!#. This magni-
tude of the zeroth harmonic is consistent with RM’s theoretical
argument—the order of magnitude of the zeroth harmonic5
O(«2)—since the largest measured value of« in RM’s experi-
ment is around 0.15~Fig. 12!, so thatO(«2);0.023. A compari-
son of numerical results with experimental data is not available,
since the zeroth harmonic has been removed from Fourier analy-
sis in RM’s experiments.

Fig. 12 compares the present results with RM’s experimental
data and theoretical solutions for Bay 3. Thex-axis is normalized
by Agh/v, and the harmonic amplitude is normalized by the
water depth. A good agreement is observed between measured
data and present numerical results. For the first harmonic, the
existence of nodes and antinodes along the bay is demonstrated;
for the second, the amplitude decreases gradually toward the bay
entrance and is well captured by the present model, whereas RM’s
theory predicts a rather uniform amplitude along the bay. The
energy transfer to the higher harmonics in the bay and the gen-
eration of a secondary resonant peak through the nonlinear inter-
actions are shown clearly in the present case.

We remark here that the numerical results show short wave
oscillations near the bay mouth for the second and third harmonic
components. These wiggles are due mainly to the strong velocity
of the gradients near the corner of the bay entrance. It is expected
that a further rounding of the corner could reduce the intensity of
the wiggles. Although the wiggles are quite small, they affect the
convergence of the solution so that a rather large number of itera-
tions ~which sometimes reach 15–20! and a small time step
(T/Dt5100) are needed to get a converged solution. Further re-
search is necessary to resolve the singularity at the corner bound-
ary and to achieve a fast convergence.

Fig. 13 shows the comparison for Bay 2. The numerical solu-
tions for the first harmonic are almost identical to RM’s theoret-
ical results. Nodes and antinodes in the second and third harmonic
are well represented by the numerical results. For the third har-
monic, the spatial variation of the harmonic amplitude—
decreasing from the bay end toward the middle of the bay and
then increasing toward the bay entrance—are well simulated by
the present numerical model. Unlike the previous case of Bay 3,
the measured envelope of the second harmonic amplitudes in Bay
2 does not show any variation in space, which is also captured in
the numerical results.

Near the bay entrance, the present numerical solutions over-
predict the measured data, especially for the second harmonic.
Similar overprediction near the bay mouth has been observed in
Bay 3, which might be due to the fact that the entrance loss has
not been incorporated into the present model.

The comparison for Bay 1, the shortest bay, is shown in Fig.
14. The overall agreement is quite good. The numerical solutions
predict well the general pattern of amplitude variation of each
harmonic in space. It is noted that for the first and second har-
monic, the node outside the bay locates nearx85x/h521, re-
gardless of the bay length. Therefore, the energy transfer between
D OCEAN ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 23



Fig. 11. Time history of free surface elevation and amplitude spectrum at different locations along centerline of bay
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the first and second harmonic components would be active up
this point.

Resonant Generation of Subharmonics

Harbor resonance can be caused by bound infragravity~subhar-
monic! waves~Bowers 1977; Mei and Agnon 1989; Wu and Liu
1990!. Through interactions between bound infragravity wave
and harbor structures, free infragravity waves can also be gen
ated locally, and when the frequency of the infragravity wave
coincides with the natural frequency of the harbor, a resona
excitation occurs.
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o

r-

t

In this section, the present model is used to study wave-group
induced harbor resonance. The incoming wave system generat
by the internal wavemaker consists of two carrier wave compo
nents. A bound subharmonic wave is generated through the non
linear interaction of carrier waves, and the frequency of the boun
subharmonic wave is designed to be the same as the natural fr
quency of the harbor, so that the subharmonic wave component
expected to be resonated inside the bay.

The geometry of the longest rectangular bay used in RM’s
experiment~Bay 3! is chosen for this study. Fig. 15 shows the
linear analytical solution of the amplification factor for this ge-
RING © ASCE / JANUARY/FEBRUARY 2004
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Fig. 12. Comparison of present numerical results with experimenta
data and Rogers and Mei’s~1978! solutions for the longest bay~Bay
3!: experimental data~sss!; present numerical solution~ !;
Rogers and Mei’s nonlinear solution~• • •!; linear theoretical solution
~ • • • !
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Fig. 13. Comparison of present numerical results with experimenta
data and Rogers and Mei’s~1978! solutions for middle-length bay
~Bay 2!: experimental data~sss!; present numerical solution
~ !; Rogers and Mei’s nonlinear solution~• • •!; linear theoretical
solution ~ • • • !
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ometry. As shown in the figure,v1 , which corresponds to th
third resonant mode, is very close to the incoming wave
quency studied in the previous section. In addition tov1 , an
additional component with frequencyv2 is also generated in th
internal wavemaker. The choice ofv2 is made such that the
bound subharmonic wave with a beat frequencyDv5v22v1

coincides with the frequency of the second resonant mode.
frequencies of the two carrier waves arev150.21 and v2

50.33 Hz, respectively; the same target wave amplitude is u
that is,A15A250.05 m, and the corresponding bound long-wa
period is about 8 s.

The numerical results of this case show very complicated f
surface fluctuations. Due to the narrowness of the bay, no su
variation across the bay is observed. The temporal variation o
wave energy can be analyzed through a wavelet spectrum
shown in Fig. 16. Atx52.4 and 12.5 m@Figs. 16~a and c!#, the
wave energy is concentrated at the carrier wave period~4–6 s!,
and the energy level at the subharmonic wave~8 s! is low. Note
that one of the incoming carrier waves, whose period is 4.
e-

he

ed,
e

e-
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coincides with the third resonant mode in the bay so that
energy level at 4–6 s is amplified and is much bigger than the
for the other incoming wave, whose period is 3 s.

As expected, the subharmonic wave energy does indeed d
nate at certain locations, as shown in Figs. 16~b and d!, and at the
end of the bay@Fig. 16~e!#, the dominant energy level at both th
carrier wave and subharmonic wave is shown clearly. Compa
the time for the subharmonic wave energy to fully emerge
different locations@Figs. 16~b, d, and e!#, shows that the further
the wave’s position from the bay mouth, the more time it takes
emerge. This seems reasonable because time and space a
quired to transfer wave energy into subharmonics. Once the s
harmonic waves are fully developed, they stay in the bay,
short wave components whose wave period is less than 3 s have
not reached a quasi-steady state at any location. This phenom
may be explained by the relatively intensive energy transfer
tween higher harmonic wave components. On the other hand,
interesting to see the periodic feature of the wave energy tran
between long wave components whose period is more than 6
OCEAN ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 25
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Fig. 14. Comparison of present numerical results with experimenta
data and Rogers and Mei’s~1978! solutions for shortest bay~Bay 1!:
experimental data~sss!; present numerical solution~ !; Rogers
and Mei’s nonlinear solution~• • •!; linear theoretical solution
~ • • • !

Fig. 15. Analytic solution of amplification factor for longest bay
used in Rogers and Mei’s~1978! experiment
26 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEE
shown in almost all locations. Among all of them, the nearly 12 s
periodic feature at the innermost bay@Fig. 16~e!# is the most
obviously shown.

Using the time series of free-surface elevations, FFT analysis
is performed to obtain the amplification factor, as shown in Fig.
17. The time segment of 150 to 250 s is used in the FFT, since the
carrier wave and subharmonic waves have reached a quasi-stead
state at around 70 s, as shown in Fig. 16. Fig. 17~a! shows the
amplification factor at the bay entrance@x5~0,0!# with the bay

l

Fig. 16. Time history and wavelet spectrum at different location
along centerline of bay
RING © ASCE / JANUARY/FEBRUARY 2004
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closed. Note that only one target wave height (2A1) is used for
normalization so that two carrier waves have an amplificati
factor of almost 1. Since the nonlinearity is not strong~«50.13!,
the amplification factors for subharmonics and superharmon
are not large. However, when the bay is opened, the subharmo
wave component is clearly amplified, since its frequency co
cides with the second resonant mode of the bay@Fig. 17~b!#.

The spatial amplitude variations along the bay for a carr
incoming wave and subharmonic wave are shown in Fig. 18. T
pattern of spatial variation of the subharmonic wave amplitude

Fig. 17. Amplification factor: ~a! at bay entrance with bay closed
~b! at end of open bay

Fig. 18. Spatial variation of amplification factor along bay
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very similar to the carrier wave response to the second resona
mode, as shown in Fig. 13~a!, which indicates a spatial variation
of amplification for a subharmonic wave whose wave energy is
supplied from superharmonic waves.

Concluding Remarks

The newly developed finite-element model based on modified
Boussinesq equations is applied to linear and nonlinear harbo
oscillation problems. An internal wavemaker is employed, and the
reflected/radiated waves are absorbed in the sponge layer. Seve
comparisons between the present model and the experiment
data are presented to demonstrate the applicability of the prese
model for studying and analyzing nonlinear harbor resonanc
problems.

To enable the present model to be used for more practica
applications, the computational efficiency needs to be improved
To avoid the singular behavior at the sharp edge of the harbo
mouth, the boundary has been smoothed and a fine mesh is us
in the present work. This approach may not be practical for a
large-scale problem with a very complex boundary. Further inves
tigation needs to be performed to improve the convergence cha
acteristics near the sharp corner. Furthermore, different dissipa
tion mechanisms, such as wavebreaking, bottom friction, and
partial reflection, need to be added to the present model.
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