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Abstract: The finite-element model for modified Boussinesq equations developed in Part | of this paper is used to study harbor
resonance problems. The internal wavemaker technique is implemented on an unstructured finite-element mesh, and a sponge layer is u:
as an open boundary condition. Both linear and nonlinear harbor oscillations in rectangular and circular basins are examined, an
experimental measurements and analytical solutions are used to validate the model. Finally, the wavelet transform is employed to analyz
transient features of the nonlinear resonance problem.
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Introduction merical models for calculating the harbor oscillations induced by

Harbor resonance is the phenomenon of trapping and amplifica-nonlinear transient waves are essential.
tion of wave energy inside a semienclosed water body, such as a Several existing numerical models could be used to calculate
harbor or bay. If wave motions inside a harbor are forced to occur harbor oscillations. Using the linear mild-slope equation, several
at one or more of the natural frequencies of the harbor, which research groups have developed various finite-element models
depend on the harbor configuration, the amplitudes of harbor os-(FEM), for example, Chen and M¢1974), Tsay and Liu(1983,
cillations will become large and could create unacceptable vesselXu et al.(1996, Jeong(1999, and Panchang et 42000. These
movements and excessive mooring forces, leading to the breaking’HOdels calculate linear monochromatic wave oscillations in har-
of mooring lines. In designing a new harbor or modifying an bors of arbitrary configuration and variable bathymetry. The ef-
existing one, it is essential to have a good understanding of thefects of bottom friction and boundary absorptiguartial reflec-
natural frequencies of the harbor and the possible sources of forc-tion) are usually included. These models, which use a hybrid
ing for harbor resonance. Moreover, a model, either numerical or element solution method that combines analytigathe offshore
physical, should be used to examine the temporal and spatialarea and finite-element numericghear and inside the harbor
variations of wave amplitudes inside the proposed harbor undersolutions to determine harbor responses to small-amplitude waves
design wave conditions. with a single wave frequency, are an extension of the original
For a simple harbor geometry with constant depth, the natural model for linear shallow-water equations developed by Chen and
frequencies and corresponding free-surface oscillations can beMei (1974.
predicted analytically. However, for more complex harbor geom- Because of their simplicity, these models have been used for
etry, transient excitations, and cases where nonlinear effects areassessing design or modification of existing harfpfirlsexample,
important, the harbor response can be determined only from ex-Lillycrop et al. (1993; Panchang et al(2000]. However, the
periments conducted in a hydraulic model or with a numerical most serious drawback of these models is the limitation of using
model. Although the usefulness of conducting a hydraulic model linear theory, since they cannot be used to investigate harbor os-
study should never be underestimated, there are several limita<illations induced by nonlinear transient waves.
tions. First, it is costly to construct and modify the hydraulic Lepelletier(1980 developed an FEM for solving conventional
model to collect data for a long duration with a fine spatial reso- Boussinesq equations(CBES [see also Lepelletier and
lution, and second, scaling the hydraulic model is also difficult Raichlen(1987]. The model includes several dissipative effects,
when both short waves and infragravity waves are of interest. such as bottom friction and entrance losses, and a time-varying
Therefore, research efforts focused on the development of nu-radiation condition at a finite distance from the harbor entrance is
used to simulate open sea conditions. Since the model employs
Senior Researcher, Water Resources Research Dept., Korea InstitutdBES, the water depth must remain small relative to the wave-

of Construction Technology, Gyeonggi-do, Korea. length in the entire domain of interest, including the offshore
_2Pr0feSSOF, School of Civil and Environmental Engineering, Cornell region. Therefore this model is not suitable for studying problems
Univ., Ithaca, NY 14853. where incident waves consist of short wave components, which

Note. _Discussipn open until June 1, 2004. Separate ‘discussions Mustould be responsible for generating bound and free infragravity
be submitted for individual papers. To extend the closing date by one waves that could be resonated near and inside the harbor
month, a written request must be filed with the ASCE Managing Editor. To include the short wave components modifﬂedextendéﬁ

The manuscript for this paper was submitted for review and possible . . ) . A
publication on November 27, 2002: approved on June 9, 2003. This paperBOUSSINesq equation$MBEs) have been intensively studied in

is part of theJournal of Waterway, Port, Coastal, and Ocean Engineer- ~ '€cent years. Among these, Nwogu993 MBEs have been
ing, Vol. 130, No. 1, January 1, 2004. ©ASCE, ISSN 0733-950X/2004/1- Wwidely used for various physical problems. The MBEs are appli-
17-28/$18.00. cable to waves whose lengths are about twice the water depth.
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In Part | of this paper, Woo and Li(2004) developed an FEM  that the water depth is constant and the center of the source region
for Nwogu's MBEs using the Galerkin method with linear ele- is parallel to they-axis, the source function can be written as
ments. Auxiliary variables are introduced to reduce the third-order follows (Wei et al. 199%
spatial derivatives in the governing equations to second order, and , . . -
five matrix equations are constructed and solved using the Fa(xy,t)=D sinksin(6,)y —wt]exgd —y(x—x)°] (1)
predictor-corrector time-integration procedure with appropriate \here D=magnitude of source functionk=wave number;

boundary conditions. The model has been verified by checking ,,—\ave frequency;y=parameter associated with width of
the numerical results with various known analytical solutions and ¢, rce functionx® =x-coordinate of central location of source
w

experimental data. region; andd,,=angle between propagation direction of the wave
This paper uses the FEM developed by Woo and(Ri04) to and thex-axis. For a monochromatic wave or single component of

study harbor oscillations, focusing especially on nonlinear super- iregular waves, the source magnitulecan be determined by
and subharmonic generation through resonant interactions. Al-

though several FDMs/FEMs exist for the MBESwogu 1993; 2no(w2—gCgk*h®)cog6,,)
Wei and Kirby 1995; Li et al. 1999; Walkley and Berzins 2002 = wkI[1— Co(kh)?]

to the writers’ knowledge, computational results have not been 5
published for the nonlinear harbor resonance problem. The mainwhereC;, Cg=constants shown in Part | of this pag&oo and
objective of this paper is to investigate the model performance for Liu (2004)], that is, Cs=B(B/2+1); Ce=Cs+1/3; p=2,/h;
the nonlinear properties of harbor oscillation and compare it with and | =integral constant given by

existing theoretical/experimental data. An internal wavemaker is )
implemented inside the computational domain and a sponge layer |— \/Eexp( _ (k cosby) )
is installed in the open ocean so that both incident wave genera- oY 4y

tion and radiated waves are treated accurately.

Since the present FEM is a time domain model, the temporal
variation of the physical system can be represented. It is interest-
ing to examine the rate of energy transfer between different har-
monic components in time. The wavelet transform technique is
used to analyze the transient feature of the harbor resonance.

The next section describes the internal wavemaker embedde

)

®)

Note that the width of the source function should be as narrow as
possible, since the assumption of a linearized governing equation
and constant water depth in the source region is made in deriva-
tion of the source function. On the other hand, enough grid points
are needed in this region to generate the target waves. As a result,
he choice of they value is decided by these two factors. The

in an unstructured mesh. Then the section on linear oscillation ypical values ofy used in the present model are in the range of

. . . . 80/\?—320A? (A=wavelength corresponding to a source func-
first applies the model to the classical problem of linear resonance.. . . -
. ion width that is about 0.25-0.5 times the wavelength.
in a rectangular bay, and then, to test a more generally shape L o .

. 4 . To apply the source function in the present FEM, it is approxi-
harbor, studies the linear resonant responses of a circular harbor, . S .

. . . S . . mated as a linear combination of shape functions and the nodal

The succeeding section on nonlinear oscillations first dlscussesvalues ofET(x,y.1):
resonant excitation in a rectangular bay and then presents wave- wlXo Yol
group-induced harbor resonance. We end the paper with some ND

concluding remarks. FaOGy,nAD= 2, U (Y {F o} “)
=1

whereND=total number of nodes; anfi;(x,y) =shape function.
Wave Generation inside Domain At each predictor step, the nodal values{8f}} are calculated

and the global forcing vector is formulated. This global vector is
Proper treatment of incident wave generation and radiation of ysed continuously in the iterative corrector step.
outgoing waves is critical to ensuring the accuracy of any harbor  The region in which the source function is applied is decided
oscillation model. Within the framework of linear wave theory, based on the coordinate of the element centroid. Therefore the
the total wave field is the sum of incident waves and radiated actual boundary of the source region on the unstructured mesh is
waves, and therefore only the radiated wave field needs to bejrregular, as shown in Fig. 1. However, since the intensity of the
solved. For a nonlinear problem, however, the incident and radi- source function is reduced exponentially in the source region, this
ated waves generated inside the computational domain cannot bérregularity does not affect the accuracy of the target wave gen-
separated. The problem of generating incident and radiating out-eration.
going waves at the boundary at the same time becomes difficult  To verify the accuracy of the source function method, we use
but can be solved approximately by using a source function the model to generate monochromatic waves. The target wave has
method; that is, the target waves are generated inside the compuan amplitude of 0.025 m, a wave length of 2.5 m, and a wave
tational domain, whereas the radiated waves are absorbed in theriod of 1.27 s. The computational domain i) €[0,30]
sponge layer located in the outer boundary of the domain. %X [0,0.1] m with a constant water depth of 1 m. The center of the
source region is located at=15,y<[0,0.1] m, and two sponge
layers of 5 m width are placed at both ends of the domain. The
computational domain is composed of 842 nodes and 1,120 ele-
Under the linear theory assumption, Wei et(8999 presented a  ments over an unstructured triangular mesh so that the wave is
source function for the MBEs that relates source function magni- resolved with approximately 20 nodes per wavelength. The time
tude to the target surface wave characteristics. The source term istep ofAt=0.025s is used, and the source region width is about
added either to the continuity equation or to the momentum equa-1 m.
tions. This idea was implemented in their finite-difference model. Fig. 2 shows side-view snapshots of surface elevation at vari-

The same methodology is adopted in the present FEM. A ous times. The waves are generated at the source region and then

source functiorfF}) is added to the continuity equation. Assuming propagate toward the ends of the domain. The sponge layer thick-

Source Function Method
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Fig. 1. Schematic diagram for source region and wave propagation
direction
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Fig. 2. Side views of internally generated free-surface elevation of
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Fig. 3. Finite-element mesh for Ippen and Godél963 experiment

ness is roughly 1.5 times the target wavelength, and sponge layers
at both ends dissipate wave energy quite effectively. The model
runs for 20 wave periods without any instability problem. The
numerical solutions are compared with the analytic solution
(which is plotted in circlesin Fig. 2(c). The agreement is quite
good, indicating that both the internal generation of waves and the
sponge layer are performing accurately.

Linear Oscillations

To evaluate the range of applicability of the present FEM, reso-
nant responses of simply shaped harbors to periodic small-
amplitude incident waves are first examined, and the simulation
results are then compared with the existing experimental/
theoretical data. Scaling of the domain size is usually used in this
study to avoid the possible round-off error that can be generated
at a very small element.

Resonance in Rectangular Bay

In this section, we consider the classical problem of resonance in
a narrow rectangular harbor where the harbor width is much
smaller than the harbor length. The wavelength of the incoming
wave is much larger than the harbor length and the wave ampli-
tude over water depth ratio is very small, so that the harbor re-
sponse is linear.

Laboratory experiments were carried out by Ippen and Goda
(1963 and Lee(1971). The dimensions used in the experiments
are harbor widtk0.0604 m, lengtk0.3111 m, and depth
=0.2572 m. Laboratory data were collected at the center of the
back wall of the harbor.

Fig. 3 shows the computational domain used in the present
simulation. Due to symmetry, only the upper half of the domain is
used for the computation so that the corresponding open boundary
shape is a quarter circle. Note that the shape of the open boundary
can be arbitrary due to the present combination of internal wave-
maker and sponge layer. Compared with the FEM, based on a
mild-slope equation in which the shape of the outer boundary
should be circular so that a large amount of elements need to be
used in the open ocean, the arbitrary shape of the open boundary
could help reduce the computational cost considerably.

The computation was performed for a harbor with wid&02
m, length=31.11 m, and depth25.72 m, representing a 1:100
prototype for the experiment setup of Ippen and GA®63. The
computational domain consists of 1,893 nodes and 3,592 triangu-
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_ _ _ the physical experiments of several energy dissipation mecha-
Fig. 4. Snapshots of free-surface elevation for wave with wavelength nisms, such as entrance loss and bottom friction, which are not
of 148 m kL=1.32) considered in the present numerical model.

lar elements. The element size gradually increases towayd Resonance in Circular Bay

which is the location of the open boundary, so that the length of To ensure that the present model can be applied to an arbitrarily
the boundary element oR, is around 20 times larger than the shaped harbor, a simulation is performed for the harbor resonance
one near the harbor entrance. For the sponge layer, the center oih a circular harbor, and the simulation results are compared with

the radiation X.) is set at k,y)=(0,0), and the starting position  the experimental data and analytic solutidhse 197). Triangu-

of the sponge layerI{®) is 180 m. The center of the internal lar unstructured elements are used to fit the circular boundary of
wave-generation region is locatedxat — 150 m, and the area of  the harbor, and the influence of the mesh quality on the efficiency

the source region isx(y) e[ —165,— 145] X[ 0,150 m. and accuracy of numerical solutions is investigated.

Fig. 4 shows snapshots of the free-surface elevation, which is  Lee (1971 carried out laboratory experiments on harbor oscil-
normalized by the target wave height at different times. The in- lations in a circular harbor with constant depth. In these experi-
coming wavelength is 148 m, and the corresponding wave num-ments, the radius of the circular harb@ris 0.2286 m, and the
ber parameterl(L), defined as the wave number times the harbor constant depth is 0.3048 m. Two types of circular harbors were
length, is 1.32. The laboratory experiments showed that the fun-used, one with a 10° opening and the other with a 60° opening.
damental resonant mode occurs at this wave frequency. The inci-The amplification factors at fixed points inside the harbor were
dent wave amplitude is 0.33 m according to the experimental measured as a function of wave-number parameter, defined as
data, so that the nonlinearity is quite smalllf=0.01). kR. One of the fixed points is located at the center of the harbor

One of the most important factors in modeling harbor reso- (denoted as Pland the other is located at a distance of 0.213 m
nance problems is the absorption of radiated waves from the har-from the center with an angle of 4%8enoted as P2 The loca-
bor. As is clearly seen, the sponge layer can effectively absorbtions of P1 and P2 are indicated in Fighp
radiated waves. Relatively large elements are used in the sponge The numerical model is applied only to the case with a 60°

layer (roughly 20 nodes in the sponge layer along0), which opening. Fig. 6 shows the computational domain used in the nu-

reduces the large computational cost associated with the necessitynerical simulation. The total number of elements is 8,358, and

for a relatively thick sponge laydr-1.5 times the wavelength the total number of nodes is 4,302. In the simulation, a radius of
Numerical simulations are performed for a rangébfvalues. 21 m and a depth of 28 m are used, representing a 1:91 prototype

The range covers the first resonant peak shown in the laboratoryof the experiment setup. Since the incoming wave direction is

experiments. The numerical results indicate that the amplification normal to the harbor, only one-half of the domain is used.

factor atkL=1.32, which is near the fundamental resonant fre- The velocity gradient near the sharp edge at the tip of the

quency of the harbor, is around 7. On the other hand, Ippen andharbor entrance is too high to be adequately represented by the

Goda (1963 showed that the linear theory overpredicts the am- linear interpolating functions adopted in the present model. To

plification, that is, as almost 8. Whdd_=2, the amplification avoid this singularity problem, the sharp edge is rounded, and a

factor is almost 1, and other cases show that the factor is betweermesh with a high resolution near the harbor mouth is employed

1 and 5. The quasi-steady state can be reached within 10 wavdFig. 6(b)].

periods in all cases, although there are modulation periods for The source region for the internal wavemaker isyj e

some cases. [—150,~130]X[0,150 m. The incident wavelength varies from
Fig. 5 compares the present numerical results with experimen-386 to 87 m, corresponding toR values from 0.35 to 1.5, re-

tal data and linear theory. The agreement is quite good exceptspectively. For the location of the sponge layer=(0,0) and

near the resonant frequency, which could be due to the effect onI'S= 150 m.
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(b) Close view (b) t= 127.8 sec

Fig. 6. Finite-element mesh for Leeid 971 experiment

Fig. 7. Snapshots of free-surface elevation for circular b&y (
=1.1)

The snapshots of the free surface at its maximum and mini- Nonlinear Oscillations
mum elevation forkR=1.1 is shown in Fig. 7. The whole free
surface in the harbor moves up and down, showing behavior simi- Resonance Generation of Superharmonics
lar to that of the fundamental resonant mode. We remark here that
if the original sharp edge boundary and a coarse mesh are used dRogers and Me{1978, hereafter referred to as RM, investigated
the harbor mouth, noticeable high-frequency oscillations emerge,the nonlinear resonant excitation in a long and narrow bay. They

and a large number of iteratiorisometimes more than 2%re used the CBEs inside the bay and the linear wave theory outside
required to obtain converged solutions. This is particularly true the bay so that the nonlinear problem inside the bay is decoupled
for kKR>1.2. from the problem in the ocean. The resulting 1D nonlinear, two-

At the center pointP1), a quasi-steady state is reached within point boundary value problem inside the bay was solved numeri-
4-5 wave periods. It takes a longer time to reach a quasi-steadycally in the frequency domain. Experiments were also performed
state at P2, which is located closer to the harbor mouth. This for a fixed frequency and three different bay lengths, which cor-
pattern of reaching a quasi-steady state is similar for all wavesrespond to the first three resonant modes, respectively.
tested in the present simulation. RM’s numerical results for the second and third harmonics

Fig. 8 compares the present numerical solutions with Lee’s deviate significantly from experimental data. One reason for these
(1971 experimental data and linear theoretical solutions and differences could be that their experiments were performed in the
Jeong’s(1999 numerical solution of the FEM based on mild- intermediate depth conditiony.?=0.257, which is beyond the
slope equations. At both P1 and P2, the general variation of therange of validity of the CBEs. Another reason could be that the
amplification factor is well represented by the present model. The assumption of linearizing the wave field outside the bay might not
amplification factor at the first resonant peak agrees well with the be accurate. Nevertheless, their work was the first rigorous study

model results and experimental data. Jeoriy®9 FEM solu- that investigated the importance of nonlinearity and dispersion in
tion, where the partial reflective boundary condition is employed, the harbor oscillation problem.
agrees well with the measured data even wk&r1.0. The The present numerical model provides two important improve-

present model does not include any energy dissipation mecha-ments to RM’s approach. First, the governing equations adopted
nism, and akR increases, the difference between the present here provide a wider range of validity than the CBEs so that the
solutions and the experimental data grows. This difference could dispersion parameter for RM’s experiments is within the accuracy
also be caused by the boundary modification made at the harborof the present model. Second, the nonlinear theory is applied to
mouth. the whole domain.
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Fig. 8. Comparison of amplification factor at two points in a circular
harbor: present numerical solutié@@®); Lee’s (1971 experiment Fig. 9. Finite-element mesh for Rogers and Md{978 experiment
(XX X); mild slope FEM(+++) (Jeong 1998 linear theoretical
solution(- - -)

the bay mouth is rounded. It will later be shown that the numeri-
cal solution in the bay is only slightly affected by this modifica-

RM performed experiments for three bays of length 1.211, tion of the bay mouth.
4.173, and 7.136 ft, hereafter referred to as Bay 1, Bay 2, and Bay The center of the numerical internal wavemaker is located at
3, respectively. Since the wave system was nonlinear, RM experi-x=—18m, and the wavemaker source region xsyj [ — 20,
mentally determined those bay lengths by producing the first three — 16] X[ 0,20] m. The target wave generated in the internal wave-
resonant peaks. The wavemaker, located at a distance of 31 fimaker is chosen in such a way that the harmonic amplitudes
from the bay mouth, generates waves with a wave period of 1.545calculated at X,y)=(0,0) with the bay mouth closed are the
s. A constant water depth of 6 in. was used, and the correspondingsame as RM'’s measurements. Two target wave components are
wavelength was about 6 ft; three incident wave amplitudes were found sufficient to reproduce RM’s measurements: the first has a
tested for each bay. wave amplitude of 0.035 m and a wavelength of 18.3 m, with a

RM'’s physical experiments first measured the amplitude of the corresponding wave period of 4.9 s; and the second has a wave
standing waves at the bay mouth with the bay completely closed.amplitude of 0.01 m and a wavelength of 7.9 m, with a wave
From these measurements the harmonic amplitudes and phasperiod of 2.45 s.
differences were calculated and used as the boundary condition For the sponge layer, the center of the radiation is located at
for their numerical calculations for the wave field inside the bay. x.=(0,0), and the starting position of the sponge layed s
RM noted that in their theory and experiments the zeroth har- =180 m. There are 3,825 nodes and 7,200 elements in the com-
monic was assumed to be small and was removed from the Fou-putational domain and around 4 elements across the bay, and the
rier analysis. element size gradually increases toward the bouniigpyn the

To compare the present numerical results with RM’s experi- ocean. The size of the element ndd, is more than 10 times
ments, we need to follow the experimental procedure exactly. larger than the one near the harbor mouth.
However, the limitation of the computational resources makes it  Fig. 10 shows the overall view of the snapshots of free-surface
necessary to use a smaller domain and place the wavemaker muchklevation at different times for the case of Bay 3. Fig(alGs at
closer to the bay than in RM’s experiments. t=15.2s, and the response of the bay has not been fully devel-

Fig. 9a) shows the computational domain for Bay 3, whose oped. As time goes on, certain natural frequencies of the bay are
shape is similar to the one shown in the previous section. Again, resonated, and the amplified surface elevation is clearly shown in
since the problem is symmetric with respect to yhaxis, only a Figs. 1@b—o0). It is also evident that the sponge layer effectively
half domain is used for computations. The physical dimensions of damps out the reflected and radiated outgoing waves. Although
the rectangular bay are a width of 0.5 m, a length of 21.75 m, and the elementwise small oscillations, whose amplitude is less than
a depth of 1.525 m. This represents a 1:10 prototype of RM’s Bay 0.001 m, are generated at the harbor mouth, they do not affect the
3 experimental setup. In Fig(l9, the automatic mesh generator numerical solutions in time and space. There is no visible free-
causes the mesh refinement in some areas in a bay. To avoid theurface variation across the bay, which is consistent with RM’s
singular behavior at the corner of the harbor mouth, the edge of observation in the experiments.
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components with the corresponding reduction in the magnitude of
the first harmonic. On the other hand, Figs(cland ¢ show that

the magnitude of the higher harmonics is even larger than that of
the first harmonic. Especially at=(17.2,0 [Fig. 11(e)], the sec-

ond harmonic amplitude is greatly amplified, which is in accord
with RM'’s observation that the secondary resonance peak is de-
veloped through nonlinear interactions.

Note that the zeroth harmonic amplitude at certain locations is
not entirely zero. The largest value is around 0.02, which occurs
when the first harmonic is wedligs. 11c and ¢]. This magni-
tude of the zeroth harmonic is consistent with RM’s theoretical
argument—the order of magnitude of the zeroth harmenic
O(e?)—since the largest measured valuesofn RM’s experi-
ment is around 0.18Fig. 12), so thatO(&2)~0.023. A compari-
son of numerical results with experimental data is not available,
since the zeroth harmonic has been removed from Fourier analy-
sis in RM’s experiments.

Fig. 12 compares the present results with RM’s experimental
data and theoretical solutions for Bay 3. Thexis is normalized
by Jgh/w, and the harmonic amplitude is normalized by the
water depth. A good agreement is observed between measured
data and present numerical results. For the first harmonic, the
existence of nodes and antinodes along the bay is demonstrated;

= 05 for the second, the amplitude decreases gradually toward the bay
< o0 entrance and is well captured by the present model, whereas RM'’s
05 theory predicts a rather uniform amplitude along the bay. The
30 Wad energy transfer to the higher harmonics in the bay and the gen-
20 10 e 20 eration of a secondary resonant peak through the nonlinear inter-
v S T 20 actions are shown clearly in the present case.
(c) t = 52.9 sec x (m) We remark here that the numerical results show short wave

oscillations near the bay mouth for the second and third harmonic
Fig. 10. Snapshots of free-surface elevation for Rogers and Mei's components. These wiggles are due mainly to the strong velocity
(1978 experiment of the gradients near the corner of the bay entrance. It is expected

that a further rounding of the corner could reduce the intensity of

To verify if the system has reached a quasi-steady state, thethe wiggles. Although the wiggles are quite small, they affect the

time history of free-surface elevation at different locations is plot- ;ozve(rv%ﬁinche of ::eti?;)lutl(?n sohthlagt ?Zg:lr:jer Iargr;: rl1|u21nk]ner Otf ltera-
ted in the left panels in Fig. 11. The time series shows a quite ons ch sometimes reac K a sma e step

different pattern of free surface movement at different locations. (T/At=.100) are needed to get a cqnverqu solution. Further re-
In front of the harbor entrancex=(—4,0)], the free-surface os- search is necessary to resolve the singularity at the corner bound-
cillation is very small for all time, indicating that there is a node. 2y @nd t a;]chleveha fast conyerg;ance. N ol sol

As shown in Figs. 1b-e), the higher harmonic components start Fig. 13 s ows the comparison for B_ay 2'_T € nume,rlca Solu-
to emerge in the bay. Because of the standing-wavelike motionstions for the first harmonic are almost identical to RM’s theoret-
in the bay, each location reveals a different pattern of free-surface

ical results. Nodes and antinodes in the second and third harmonic

fluctuations. Figs. 1b and d show the antinodes for the first ~are Well represented by the numerical results. For the third har-
harmonic, while Figs. 1t and @ demonstrate the nodes. These Monic, the spatial variation of the harmonic amplitude—
plots also show an initial modulation period before the system decreasing from the bay end toward the middle of the bay and
reaches a quasi-steady state, similar to the linear system in théhen increasing toward the bay entrance—are well simulated by
previous section. These modulations are most obviously observedhe present numerical model. Unlike the previous case of Bay 3,
at the inner locations of the b4ffigs. 11d and @], and a quasi- the measured envelope of the second harmonic amplitudes in Bay
steady state is reached at aroure150s. 2 does not show any variation in space, which is also captured in
The characteristics of free-surface oscillations at different lo- the numerical results.
cations can also be revealed in terms of spectral components. The Near the bay entrance, the present numerical solutions over-
right panels of Fig. 11 show the amplitude spectra normalized by predict the measured data, especially for the second harmonic.
the water depth at the same location as the one in the left panelsSimilar overprediction near the bay mouth has been observed in
Using the fast Fourier transforFFT), the amplitude spectra are  Bay 3, which might be due to the fact that the entrance loss has
obtained for around 15 wave periodss[150,229s. The first ~ not been incorporated into the present model.
harmonic component corresponds to 0.2 Hz, which is very close  The comparison for Bay 1, the shortest bay, is shown in Fig.
to one of the incoming wave frequencies, and the second andl14. The overall agreement is quite good. The numerical solutions
third harmonic components are 0.4 and 0.6 Hz, respectively. As predict well the general pattern of amplitude variation of each
expected, near the harbor moutis (—4,0), all harmonic compo- harmonic in space. It is noted that for the first and second har-
nents are very small. The spectraxat(2.4,0 and x=(12.5,0 monic, the node outside the bay locates nearx/h=—1, re-
[Figs. 11b and d] represent the generation of higher harmonic gardless of the bay length. Therefore, the energy transfer between
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Fig. 11. Time history of free surface elevation and amplitude spectrum at different locations along centerline of bay

the first and second harmonic components would be active up to  In this section, the present model is used to study wave-group-

this point. induced harbor resonance. The incoming wave system generated
by the internal wavemaker consists of two carrier wave compo-

Resonant Generation of Subharmonics nents. A bound subharmonic wave is generated through the non-

Harbor resonance can be caused by bound infragrasitphar- linear interaction of carrier waves, and the frequency of the bound

monic) waves(Bowers 1977; Mei and Agnon 1989; Wu and Liu subharmonic wave is designed to be the same as the natural fre-
1990. Through interactions between bound infragravity waves duency of the harbor, so that the subharmonic wave component is
and harbor structures, free infragravity waves can also be generexpected to be resonated inside the bay.

ated locally, and when the frequency of the infragravity waves = The geometry of the longest rectangular bay used in RM’'s
coincides with the natural frequency of the harbor, a resonant experiment(Bay 3 is chosen for this study. Fig. 15 shows the
excitation occurs. linear analytical solution of the amplification factor for this ge-
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Fig. 12. Comparison of present numerical results with experimental Fig. 13. Comparison of present numerical results with experimental
data and Rogers and Mei’4978 solutions for the longest baBay data and Rogers and Meid978 solutions for middle-length bay

3): experimental datgOOO); present numerical solutiof—); (Bay 2: experimental data©OO); present numerical solution
Rogers and Mei's nonlinear solutign - -); linear theoretical solution ~ (——); Rogers and Mei's nonlinear solutidn - -); linear theoretical
() solution(—-—-—-—)

ometry. As shown in the figurap,, which corresponds to the coincides with the third resonant mode in the bay so that the
third resonant mode, is very close to the incoming wave fre- energy level at 4—6 s is amplified and is much bigger than the one

quency studied in the previous section. In additionatp, an for the other incoming wave, whose period is 3 s.

additional component with frequenay, is also generated in the As expected, the subharmonic wave energy does indeed domi-
internal wavemaker. The choice aof, is made such that the nate at certain locations, as shown in Figshl&nd d, and at the
bound subharmonic wave with a beat frequerty=w,— w; end of the bayFig. 16¢)], the dominant energy level at both the
coincides with the frequency of the second resonant mode. Thecarrier wave and subharmonic wave is shown clearly. Comparing
frequencies of the two carrier waves aig=0.21 and w, the time for the subharmonic wave energy to fully emerge at

=0.33 Hz, respectively; the same target wave amplitude is used,different locationg Figs. 18b, d, and ¢&|, shows that the further
that is,A;=A,=0.05m, and the corresponding bound long-wave the wave’s position from the bay mouth, the more time it takes to
period is about 8 s. emerge. This seems reasonable because time and space are re-
The numerical results of this case show very complicated free- quired to transfer wave energy into subharmonics. Once the sub-
surface fluctuations. Due to the narrowness of the bay, no surfaceharmonic waves are fully developed, they stay in the bay, but
variation across the bay is observed. The temporal variation of theshort wave components whose wave period is less gha have
wave energy can be analyzed through a wavelet spectrum, asiot reached a quasi-steady state at any location. This phenomenon
shown in Fig. 16. Atx=2.4 and 12.5 njFigs. 18a and ¢], the may be explained by the relatively intensive energy transfer be-
wave energy is concentrated at the carrier wave pedees 9, tween higher harmonic wave components. On the other hand, it is
and the energy level at the subharmonic wé¥e) is low. Note interesting to see the periodic feature of the wave energy transfer
that one of the incoming carrier waves, whose period is 4.8 s, between long wave components whose period is more than 6 s, as
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Fig. 16. Time history and wavelet spectrum at different location
along centerline of bay

shown in almost all locations. Among all of them, the nearly 12 s
periodic feature at the innermost bakig. 16(e)] is the most
obviously shown.

Using the time series of free-surface elevations, FFT analysis
is performed to obtain the amplification factor, as shown in Fig.
17. The time segment of 150 to 250 s is used in the FFT, since the
carrier wave and subharmonic waves have reached a quasi-steady
state at around 70 s, as shown in Fig. 16. Figalshows the
amplification factor at the bay entranfe=(0,0)] with the bay
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Fig. 17. Amplification factor:(a) at bay entrance with bay closed;
(b) at end of open bay

closed. Note that only one target wave heighA(R is used for

very similar to the carrier wave response to the second resonant
mode, as shown in Fig. 18, which indicates a spatial variation

of amplification for a subharmonic wave whose wave energy is
supplied from superharmonic waves.

Concluding Remarks

The newly developed finite-element model based on modified
Boussinesq equations is applied to linear and nonlinear harbor
oscillation problems. An internal wavemaker is employed, and the
reflected/radiated waves are absorbed in the sponge layer. Several
comparisons between the present model and the experimental
data are presented to demonstrate the applicability of the present
model for studying and analyzing nonlinear harbor resonance
problems.

To enable the present model to be used for more practical
applications, the computational efficiency needs to be improved.
To avoid the singular behavior at the sharp edge of the harbor
mouth, the boundary has been smoothed and a fine mesh is used
in the present work. This approach may not be practical for a
large-scale problem with a very complex boundary. Further inves-
tigation needs to be performed to improve the convergence char-
acteristics near the sharp corner. Furthermore, different dissipa-
tion mechanisms, such as wavebreaking, bottom friction, and
partial reflection, need to be added to the present model.
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