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Abstract

A method for generating waves in Boussinesq-type wave models is described. The method
employs a source term added to the governing equations, either in the form of a mass source in the
continuity equation or an applied pressure forcing in the momentum equations. Assuming
linearity, we derive a transfer function which relates source amplitude to surface wave character-
istics. We then test the model for generation of desired incident waves, including regular and
random waves, for both one and two dimensions. We also compare some model results with
analytical solution and available experiment data. q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The problem of generating and absorbing waves at the boundary of models based on
Boussinesq-type equations is essentially an unsolved one, due to the fact that the exact
structure of the well-posed initial boundary value problem is unknown for most forms of
the model equations. Though it is possible to specify incident wave conditions at the
wavemaker boundary, the characteristics of reflected waves in the computational domain
cannot be determined a priori. One common approach is to assume the phase speed and
the direction of reflected waves at the boundary, as proposed by Engquist and Majda
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Ž .1977 . Though the error from these approximate boundary conditions may be small at
each time step of the simulation, the accumulated effect for long simulation times can be

Ž .sufficiently large to cause the model to blow up. For instance, Wei and Kirby 1995
applied the approximate radiation condition at the wavemaker boundary in their ex-
tended Boussinesq model for simulating monochromatic wave propagation over an
elliptic shoal. However, the simulation had to be terminated when sufficiently large
reflected waves from the domain reached the wavemaker boundary. Though the general
agreement between the model results from Engquist and Majda’s method and experi-
ment data is good, the source function method proposed below leads to significant
improvements.

Ž .The sponge layer method proposed by Israeli and Orszag 1981 works quite
effectively for dissipating waves with different phase speeds and directions. Models
utilizing a sponge layer to implement a radiation condition can be run for fairly long
simulation time without stability problems. However, in order to apply a sponge layer to
absorb waves reflected toward the wavemaker, waves must be generated inside the
computational domain instead of on the boundary. An example of this procedure is

Ž .described by Larsen and Dancy 1983 , who employ a line source to generate waves in a
staggered-grid solution of Boussinesq-type equations. The method employed is some-
what ad hoc in that its performance is tuned to give good results for particular examples.

Line source methods are not well suited for use in all finite-difference realizations of
Boussinesq equations. In particular, line source methods fail in the unstaggered-grid

Ž .scheme described by Wei and Kirby 1995 for the extended Boussinesq equations of
Ž .Nwogu 1993 . For this reason, we develop here a source function method based on a

spatially distributed source. The linearized form of the model equations including source
terms can be solved using Green’s functions, giving an explicit relation between the
desired surface wave history and the source function history.

In Section 2, we describe the theoretical foundations of the source function method,
considering both mass source terms used in the mass conservation equation, and applied
pressure distributions used in the momentum equations. In Section 3, we show examples
of generated monochromatic and random waves in both one and two dimensions. An
analytical solution of the linearized equation with a finite source length for generating
2D monochromatic wave in a flat bathymetry is obtained and compared with model
result. Comparisons are made between model results and experimental data for 1D

Ž .random wave propagation over a constant slope Mase and Kirby, 1992 and for 2D
Ž .monochromatic wave propagation over a shoal geometry Berkhoff et al., 1982 . For 2D

random waves, the reproduction of target wave spectra over constant water depth is
demonstrated. In Section 4, we describe the use of the mass source term to control tidal
effects during long model runs.

2. Theory

Here we consider the general problem of generating waves in a region oriented along
the y-axis, as shown in the gray region in Fig. 1. It is assumed that x is the primary
propagation direction for the waves. For an individual wave component, u is the angle



( )G. Wei et al.rCoastal Engineering 36 1999 271–299 273

Fig. 1. Source function definition in computational domain.

between the propagation direction and x-axis. The forcing leading to wave generation is
< <localized in some region x FxFx , where x yx will in general be a dimension on1 2 2 1

the order of a wavelength.
The wave generation mechanism considered here has been applied to the nonlinear

long wave equations, the Boussinesq model based on depth-averaged velocity due to
Ž .Peregrine 1967 , and the Boussinesq model with extended dispersive effects due to

Ž . Ž .Nwogu 1993 , either in weakly nonlinear or fully nonlinear Wei et al., 1995 form. In
the following, we modify these equations by including either a scalar source term in the

Ž .mass balance equation thus mimicking a mass source or a vector forcing term in the
Ž .vector momentum equation thus mimicking an applied scalar pressure distribution . In

either case, we assume that the nonlinear effects will be small in the narrow source
region. We linearize the governing equations to obtain an analytic solution in the source
region. In the numerical implementation, nonlinearity is retained in the governing
equations in the source region.

For waves in a horizontally 2D region of constant depth, the generalized form of the
linearized Boussinesq and shallow water equations may be written as

h qh=Puqa h3
=

2
=Pu s0 1Ž . Ž .t 1

u qg=hqa h2
=

2 u s0 2Ž .t t

where h is the water depth, g is the gravitational acceleration, h is the surface elevation
and u is a velocity vector in the horizontal plane. The values of a and a have1

different definitions depending on the choice of equations. For the extended Boussinesq
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Ž .equations of Nwogu 1993 , u is the velocity at the water depth zsz , and a saqa 1

1r3, with a determined by:

z 1 z za a a
as q1 ; sy0.530 3Ž .ž /h 2 h h

Ž .For the Boussinesq equations of Peregrine 1967 , u is the depth-averaged velocity,
a s0, and asy1r3. For shallow water equations, u is depth-averaged velocity and1

a sas0.1

Introducing a velocity potential f, we take us=f. The model equations become

h qh=
2fqa h3

=
2
=

2fs0 4Ž .t 1

f qghqa h2
=

2f s0 5Ž .t t

The linear dispersion relation for these equations may be obtained by considering a
plane wave solution

hsh exp i kxyv tŽ .0

fsf exp i kxyv tŽ .0

and is given by

21ya khŽ .12 2v sgk h 6Ž .21ya khŽ .
where v is the angular frequency and k the wavenumber. The relation between the
amplitude of the velocity potential f and the wave amplitude h is given by0 0

iv 2
h s 1ya kh f . 7Ž . Ž .0 0g

2.1. Source function in continuity equation

Ž . Ž .We first add a source function f x, y,t to Eq. 1 and find the corresponding solution
of the following equations

h qh=Puqa h3
=

2
=Pu s f x , y ,t 8Ž . Ž . Ž .t 1

u qg=hqa h2
=

2 u s0 9Ž .t t

Ž .We introduce a velocity potential f, integrate Eq. 9 once, and eliminate h in favor of
f to obtain the equation

f ygh=
2fqa h2

=
2f ya gh3

=
2
=

2fsygf x , y ,t . 10Ž . Ž .t t t t 1

We now assume that the y and t dependence of f and f is suitable for a Fourier
transform and introduce

` `1
ˆf x , y ,t s f x ,l,v exp il yy iv t dldv 11Ž . Ž . Ž . Ž .H H24p y` y`
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` `1
ˆf x , y ,t s f x ,l,v exp il yy iv t dldv 12Ž . Ž . Ž . Ž .H H24p y` y`

Ž .where lsksin u is the wavenumber in y direction, v is the angular frequency of the
Ž . Ž . Ž .wave. Substituting Eqs. 11 and 12 into Eq. 10 results in a fourth order ordinary

ˆŽ .differential equation ODE for f with respect to x

ˆ Ž4. ˆY ˆ ˆAf qBf qCfsgf 13Ž .
where

Asa gh3
1

2 2 3 2Bsghqav h y2a gh l 14Ž .1

2 2 2 2 2 3 4Csv yghl yav h l qa gh l1

This equation reduces to a second-order equation for either the long wave or Peregrine
Ž .models, where As0. Homogeneous solutions of Eq. 13 corresponding to progressive

waves are given by

f̂ x sexp "ilx 15Ž . Ž . Ž .h

2 2' Ž .where ls k yl skcos u is the wavenumber in the x direction. In order to obtain
ˆ XŽ .the particular solution for f, we seek a Green’s function G x, x which satisfies

AGŽ4.qBGY qCGsd xyxX 16Ž . Ž .
We impose the boundary conditions on the Green’s function to correspond to the

Žcondition that waves are radiating away from the source region where superscript n
.inside parenthesis denotes the order of differentiation

n nŽn. Žn.ˆ ˆG ™ qil G , f ™ qil f ; x™q`Ž . Ž .
17Ž .n nŽn. Žn.ˆ ˆG ™ yil G , f ™ yil f ; x™y`Ž . Ž .

Ž . X XIntegrating Eq. 16 with respect to x from x y0 to x q0, we have

X X xXq0xsx q0 xsx q0Z X X X X
X X< <AG x , x qBG x , x qC G x , x d xs1. 18Ž . Ž . Ž . Ž .xsx y0 xsx y0 H

Xx y0

The solution for the Green’s function takes different forms depending on the value of A.

2.1.1. Case 1: As0
ŽIf As0 a s0, i.e., corresponding to standard Boussinesq equations or nonlinear1

. Ž .shallow water equations , Eq. 18 becomes

X xXq0xsx q0X X X
X<BG x , x qC G x , x d xs1. 19Ž . Ž . Ž .xsx y0 H

Xx y0

Ž . XIn addition to boundary conditions 17 , we require G to be continuous at xsx . Eq.
Ž .19 then reduces to

X X < xsxXq0
XBG x , x s1. 20Ž . Ž .xsx y0
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The Green’s function is given by

X Xa exp il xyx if x)xŽ .
XG x , x s 21Ž . Ž .X X½a exp il x yx if x-xŽ .

Ž . Xwhich automatically satisfies the boundary conditions 17 and is continuous at xsx .
Ž . Ž .Substituting Eq. 21 into Eq. 20 results in

i il
asy s . 22Ž .22 lB v

As will be shown below, the above relation is included in the next case by specifying
a s0.1

2.1.2. Case 2: A/0
ŽFor A/0 asy0.39, A-0, i.e., corresponding to the case of extended Boussi-
. X Y Xnesq equations , we require that G, G , G are continuous at xsx . Thus the second

Ž .and third terms in Eq. 18 drop out and we have

Z X < xsxXq0
XAG x , x s1. 23Ž . Ž .xsx y0

The Green’s function is given by

X X X XG x , x sa exp il xyx qb exp il xyx if x)xŽ . Ž . Ž .1 2

X X X XG x , x sa exp il x yx qb exp il x yx if x-x 24Ž . Ž . Ž . Ž .1 2

Ž . Ž .where l s lskcos u and l s iL L)0 are the real and imaginary wavenumbers1 2
Ž . Ž .which satisfy the homogeneous form of Eq. 13 . The Green’s function G in Eq. 24
Ž . Yautomatically satisfies the boundary conditions 17 . In addition, G and G are continu-

ous at xsxX. The continuity requirement of GX at xsxX results in

l aq l bs0. 25Ž .1 2

Ž . Ž .Substituting Eq. 24 into Eq. 23 gives

y2 Ai l3aq l 3 b s1. 26Ž .Ž .1 2

Ž . Ž .From Eqs. 25 and 26 , we obtain

i
as . 27Ž .2 22 Al l y lŽ .1 1 2

Ž .Using linear dispersion relation 6 and definitions of l and l , we can express a as1 2

ik
asy . 28Ž .2 4 32 v ya gk h cosuŽ .1

Ž X.Terms associated with b in Green’s function G x, x correspond to the evanescent
< X <mode and is negligible for large xyx .
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2.1.3. Solution and choice of source function f
ˆNow we seek the solution for f by using the Green’s function G. Multiplying Eq.

ˆ X XŽ . Ž .16 by f x and integrating with respect to x from y` to q` gives

q` YŽ .4X X X X X
f̂ x AG x , x qBG x , x qCG x , x d xŽ . Ž . Ž . Ž .H

y`

q`
X X Xˆs f x d xyx d x 29Ž . Ž . Ž .H

y`

Ž .Integration by parts, use of the boundary conditions 17 , and use of the definition of the
delta function then gives

q`
X X Xˆ ˆf x s G x , x gf x d xŽ . Ž . Ž .H

y`

x q`
X X X X X Xˆ ˆs G x , x gf x d x q G x , x gf x d x . 30Ž . Ž . Ž . Ž . Ž .H Hq y

y` x

ˆIn principle, the source function f can be of any shape. For the examples that follow, we
ˆhave adopted a smooth Gaussian shape for f as

ˆ 2f x sD exp yb x 31Ž . Ž .Ž .
where D is the source function amplitude to be determined later from the desired wave
characteristics, and b is a parameter associated with the width of source function. The

Ž .definition 31 keeps the source function fairly well localized, i.e., for sufficiently large
2 ˆŽ . Ž .value of x or away from source region, say b x )5 the source function f x is

Ž .negligibly small. The second integral in the right hand side of Eq. 30 can be dropped
and thus we have

x
X X Xˆ ˆf x s G x , x gf x d x ,gD aI exp ilx qbI exp yLx 32Ž . Ž . Ž . Ž . Ž . Ž .H q 1 2

y`

where I and I are defined by1 2

2
` p l

X 2 X XI s exp yb x exp yilx d x s exp y 33Ž . Ž .Ž .H1 ( ž /b 4by`

2
` p L

X 2 X XI s exp yb x exp Lx d x s exp . 34Ž . Ž .Ž .H2 ( ž /b 4by`

Ž .Since L)0, the last term in Eq. 32 is exponentially decayed and its contribution is
negligible for sufficiently large x. Therefore, the corresponding velocity potential
becomes

f̂ x sgDaI exp ilx sf exp ilx . 35Ž . Ž . Ž . Ž .1 0
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Ž . Ž .Using relation 7 and expression 28 , we finally have

2h v 2 ya gk 4h3 cosuŽ .0 1
Ds . 36Ž .2

v I k 1ya khŽ .1

Ž .In summary, for given wave frequency v, wave direction u or l , wave amplitude h ,0

water depth h, and source width parameter b , the corresponding source amplitude D
can be determined from the above formula.

2.2. Source function in the momentum equation

Alternately, we can add a source term in the vector momentum equation according to

u qg=hqa h2
=

2 u syg=P 37Ž .t t

where P is a normalized pressure distribution having units of length. Using the velocity
Ž .potential, Eq. 37 may be integrated to give

f qghqa h2
=

2f sP . 38Ž .t t

Combining the continuity and momentum equations then gives

f ygh=
2fqa h2

=
2f ya gh3

=
2
=

2fsyP . 39Ž .t t t t 1 t

Ž . Ž .Comparing Eqs. 39 and 10 gives

Psg fd t . 40Ž .H
Introducing the Fourier transform for P,

1
ˆPs P exp i l yyv t dldv , 41Ž . Ž .HH24p

we obtain

ig
ˆ ˆPs f . 42Ž .

v

The remainder of the solution for this case follows similarly from Section 2.1.

3. Model tests

In this section, we use the source function method to study several cases of wave
generation and propagation, for both monochromatic and random waves. All examples

Ž .in this section are computed using the source function f x, y,t in the mass conservation
equation.

As mentioned in Section 2, the source function amplitude D is not only a function of
the desired wave characteristics, but also a function of b , the free parameter describing
the source width. The area inside the source region is essentially wasted space since
waves there are not the same as target waves generating to the far field. A large b value
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is generally preferred since the corresponding source region is narrower, equivalent to
enlarge the effective computing domain. However, too large value of b may result in a
poor finite difference representation of the source region. For the source function

Ž .described by Eq. 31 , we define the width as

< <Ws x yx 43Ž .2 1

where x and x are the roots of the equation1 2

2exp yb xyx sexp y5 s0.0067 44Ž . Ž . Ž .s

Ž . Ž .From Eqs. 43 and 44 , we have

'Ws2 5rb . 45Ž .
The source function width W can also be related to the wavelength L as

Wsd Lr2 . 46Ž . Ž .
Ž . Ž .Eliminating W from Eqs. 45 and 46 , we have

80
bs . 47Ž .2 2d L

The typical value of d we use in the model is in the range of 0.3–0.5 and the
corresponding source function width is about 0.15–0.25 times the wavelength. For

Žrandom wave generation, however, we choose a representative wave e.g., with peak
.frequency and in main propagation direction to determine a fixed b for all wave

components, i.e.,

ˆ 2f x ,l,v sD l,v exp yb x 48Ž . Ž . Ž .Ž .
where D is the amplitude of each spectral component. Then the resulting source
function can be written as

1
2f x , y ,t s D l,v exp yb x exp i l yyv t dvdlŽ . Ž . Ž .Ž .HH24p

sexp yb x 2 F y ,t 49Ž . Ž .Ž .
which results in significant saving on computing time for random wave simulation.

3.1. 1D monochromatic waÕe

To verify the source function method, we apply the model to generate 1D monochro-
matic waves over a domain with constant water depth. The extended Boussinesq

Ž .equations of Nwogu original and linearizd are used in the model.

3.1.1. WaÕe generation
We consider a computational domain shown in Fig. 2. The horizontal length of the

domain is L s50 m and the water depth hs0.5 m is constant. The center of thex

source region is located at x s25 m. To absorb wave energy, two sponge layers of 5 ms

width are placed at both ends of the domain. The properties of these sponge layers are
Ž .the same as those described by Wei and Kirby 1995 .
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Fig. 2. The computational domain used to illustrate the source function method for generating 1D monochro-
matic wave.

ŽWe are going to generate a monochromatic wave with period Ts1 s the correspond-
.ing wavelength is about 1.5 m and height Hs0.05 m, which is in the range of waves

generated by many laboratory experiments. The grid size used in the model is D xs0.02
m and the time step is D ts0.02 s. The coefficient related to source function width in

Ž .Eq. 47 is specified as ds0.3, making the source region width about 19 grid points.
We run the model up to 100 s of simulation without encountering any stability problems.

ŽFig. 3 shows the snapshots of surface elevation h at various time trTs10, 20, 40,
.100 .

Ž . Ž . Ž . Ž .Fig. 3. Snapshots of surface elevation at different times: a trT s10; b trT s20; c trT s40; d
trT s100.
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We see that waves are generated first at the source region at the center of the domain
and then propagate towards the two ends. Sponge layers at both ends of the domain
work quite well to dissipate wave energy, as evident by the decreasing wave height over
sponge layer region. The wave fields at trTs40 and at trTs100 are almost identical,
indicating that quasi-steady state is reached at trTs40. The wave crests and troughs at
these time are very close to the dashed grid lines, which are also the height of the target
wave. Further quantitative analysis shows that the relative error between the target and
generated wave height is less than 0.2%.

3.1.2. WaÕes with different periods
Next we apply the model to generate monochromatic waves with four different

Ž . Žperiods Ts 0.5, 1.5, 2.0 s. All model parameters e.g., water depth, domain length,
.grid size, time step, and source function width are kept the same as those in the

previous example for Ts1 s. We run the model up to ts100 s for all these waves and
there was no stability problem. Fig. 4 shows the snapshots of surface elevations at

Ž .ts100 s for all four waves with periods Ts 0.5, 1.0, 1.5, 2.0 s.
The generated wave fields shown in Fig. 4 are quite good and the corresponding

wave heights are very close to their target value. Since all the model parameters except
for input wave period are kept the same, the corresponding numbers of grid points per
wavelength or the numbers of time step per wave period are different for each wave. For
instance, there are about 24 grid points per wavelength for the case of Ts0.5 s and
about 194 grid points per wavelength for Ts2.0 s. These results indicate that the model
can be applied to simulate random waves which consist of superposed monochromatic
wave components with different frequencies and directions.

Ž . Ž . Ž . Ž .Fig. 4. Snapshots of surface elevation at ts100 s: a T s0.5 s; b T s1.0 s; c T s1.5 s; and d T s2.0 s.
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3.1.3. WaÕes with different amplitudes
The two previous tests are based on the linearized form of Nwogu’s extended

Boussinesq equations. Except for numerical error, model results should match those
derived from the source function theory in Section 2. In real application, however, the
original nonlinear model must be used to obtain useful information of wave transforma-
tion. We therefore run the nonlinear model to generate waves with various amplitudes.

The snapshots of surface elevation at trTs100 for different wave amplitudes
Ž .Hrhs0.1, 0.2, 0.3 are shown in Fig. 5. For comparison, the snapshot obtained from

Ž .linearized model for Hrhs0.1 is also included. In Fig. 5 a , wave crests and troughs
are on the lines of hra s"1. The shapes of crests and troughs are symmetric both0

horizontally and vertically, indicating that the generated waves are linear. In Fig.
Ž . Ž .5 b – c , however, wave shapes are no longer symmetric. Wave crests are over the line

of hra s1 and wave troughs do not reach the line hra sy1. Further analysis shows0 0

that the wave crests are sharp and wave troughs are flat, indicating that nonlinear waves
are generated. As wave amplitude increases, the asymmetry between crests and troughs
becomes larger.

3.1.4. WaÕe reflection and absorption
In all previous tests, there is no wave reflection due to constant water depth and wave

energy absorption by sponge layers at both ends of the domain. Now we change the
domain physics to illustrate the capability of the model for handling reflecting waves.
The original Nwogu’s equations are used for this case.

We take out the sponge layer at the right end in Fig. 2 and move the source to
x s24.4 m. The boundary at the right end will be reflecting wall. Except for smallers

Ž . Ž . Ž . Ž .Fig. 5. Snapshots of surface elevation at trT s100: a Hrhs0.1 linear ; b Hrhs0.1; c Hrhs0.2;
Ž .and d Hrhs0.3.
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Ž . Ž .time step D ts0.01 s and longer simulation time up to 200 s , all model parameters
are the same as previous cases. Fig. 6 shows the corresponding results. In each plot of
Fig. 6, we superpose four snapshots of surface elevation with Tr4 interval, i.e., at ts t ,i

Ž .ts t qTr4, ts t qTr2, and ts t q3Tr4, where t s40 s, 80 s, 120 s, 200 s for a ,i i i i
Ž . Ž . Ž .b , c and d , respectively. In the early stage, waves are generated from the source
region and propagate to both ends. Waves are then absorbed at the left end by sponge
layer but are reflected once they reach the wall at the right end. There exist three wave
trains in the domain, the first propagates to the left from the source region, the second
propagates to the right from the source region, and the third propagates to the left from
the reflecting wall. The resulting wave field will be standing waves on the right side of
the source and progressive waves on the left side, as shown in the corresponding plots
Ž . Ž . Ž .b , c and d .

Notice that the amplitude of the progressive waves is about twice the initial value.
This is due to the fact that the distance of the source to the wall is 26.60 m, equivalent to
17 wavelengths, resulting in the same phase for the generated waves by the source and
the reflecting waves from the wall. It is evident that the sponge layer on the left is
capable of absorbing the waves generated by the source as well as the reflecting waves
from the wall.

3.2. 1D random waÕe

Ž .Mase and Kirby 1992 conducted a laboratory study of random wave propagation
over a slope. The layout of the experiment is shown in Fig. 7, where a constant water

Ž .Fig. 6. Superposition of four snapshots for surface elevation at t , t qTr4, t qTr2, t q3Tr4: a t s40 s;i i i i i
Ž . Ž . Ž .b t s80 s; c t s120 s; d t s200 s.i i i
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Ž .Fig. 7. Experiment layout of Mase and Kirby 1992 .

Ž .depth 0.47 m on the left connects to a constant slope 1r35 on the right. Based on
Pierson–Moskowitz spectrum, two sets of random waves with peak frequencies 0.6 Hz
Ž . Ž .referred to as run 1 and 1.0 Hz run 2 are generated by the wavemaker on the left end
and propagate to the right end. Starting at the toe of the slope, 12 wave gauges are
deployed along the slope at the various locations. Time series of surface elevation at
these gauges are collected simultaneously for about 15 min for run 1 and about 13 min
for run 2.

Ž .We now apply the model to simulate the experiment of Mase and Kirby 1992 for
case run 2. The model equations used here are the fully nonlinear Boussinesq equations

Ž . Ž .of Wei et al. 1995 . Eddy viscosity terms Wei, 1997 are included in the equations to
dissipate wave energy due to wave breaking. To generate the corresponding random
wave field from the experiment data, we express the time series of surface elevation
Ž . Ž .h t and the time series of source function F t as

1
h t s h v exp yiv t dv 50Ž . Ž . Ž . Ž .H 02p

1
F t s D v exp yiv t dv 51Ž . Ž . Ž . Ž .H

2p

Ž .Using the time series data of surface elevation h t at the first wave gauge on the toe,
Ž .we first obtain the corresponding Fourier coefficients h v by FFT method. Applying0

Ž . Ž .expression 36 , the Fourier coefficients of source function D v for each component
are then determined. Applying an inverse FFT, we then obtain the corresponding time

Ž .series of source function F t , which serves as the input for the model.
The grid size for the model is D xs0.025 m and the time step is D ts0.02 s. The

shoreline condition on the right end in the experiment is replaced by a constant water
depth of 2.0 cm with sponge layer in the model. The wavemaker in the model is located
at the toe of the slope, where experimental data is available. Fig. 8 shows a comparison
of time series of surface elevation from ts20 s to ts40 s at different gauge locations.
Except for some phase differences in a few shallow water gauges, the agreement
between the model results and the experimental data is quite good for both wave height
and phase.

The discrepancy between the model and data for wave phase in shallow water regions
may be due to the replacement of the shoreline boundary condition by a constant depth
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Ž . Ž .Fig. 8. Comparison of surface elevation between model - - - and data at various gauge
Ž . Ž . Ž . Ž . Ž . Ž . Ž .locations: a hs2.5 cm; b hs5 cm; c hs7.5 cm; d hs10 cm; e hs12.5 cm; f hs15 cm; g

Ž . Ž . Ž . Ž .hs17.5 cm; h hs20 cm; i hs25 cm; j hs30 cm; k hs35 cm.

of sponge layer in the model. Wave reflection at the shoreline is different from that from
the sponge layer. Work has been done to include a shoreline boundary condition in the
model, and it is expected that the comparison between the model and data at shallow
water gauges will be improved in future versions of the model.
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We run the model for the entire length of experimental data. The agreement of time
series for surface elevation at other intervals between the model and data is similar to
that in Fig. 8. From the time series data, we evaluate the corresponding statistical
properties such as standard deviation, skewness, and asymmetry. Since we start the

Ž .model from zero initial condition, the beginning portion of model data about 20 s has
to be discarded for comparison with experimental data. Fig. 9 shows the comparison of

Ž .standard deviation and third moment statistics skewness and asymmetry between the
model and data.

These statistical quantities are important measurements for a random wave train. The
standard deviation is proportional to the root mean square wave height, or the energy of
the wave train. The skewness and asymmetry give quantitative measurement for the
degree of change of a wave shape from the sinusoidal function. These quantities are also

Ž . Ž .Fig. 9. Comparison of statistical properties between model - - - and data at various gauge
Ž . Ž . Ž . ŽU .locations: a standard deviation; b skewness ( and asymmetry .
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important for calculating forcing in sediment transport. The close agreement between the
model and data indicates that the source function method works well.

3.3. 2D monochromatic waÕe

The situation for 2D wave generation is quite different from that in 1D case. As
Ž .shown in Eq. 36 , the source function amplitude is related to u , the angle between the

x-axis and the propagation direction of target wave. For the same wave with different
propagation directions, their corresponding source function amplitudes D are different.

Ž .In addition, the source function f x, y,t will be a function of y.
Another important factor to be considered in 2D wave generation is the effect of

diffraction. The derivation in Section 2 is based on the assumption of infinite source
length in y direction, which is not possible for any practical models whose domain size
must be finite. For this reason, the generated wave field close to the boundary and far
away from source region will not be as strictly uniform as shown in the derivation. This
situation is similar to the wave field behind a breakwater gap. The uniformity of the

Ž .wave field is proportional to the gap size or source length in the model .
In the following, we will show two examples of 2D monochromatic wave generation

and propagation. We first run the model over a domain of constant water depth with a
finite length source region. Analytical solution for this case is available and will be
compared with model results. We then apply the model to study the experiment of

Ž .Berkhoff et al. 1982 for wave propagation over a complex geometry. Comparisons are
made between model results and experiment data for wave amplitudes along eight
transects in the domain.

3.3.1. Comparison to analytical solution
The Helmholtz equation is the linear and exact governing equation for wave

propagation over different water depth. For the special case of constant water depth and
infinite domain, there exists analytical solution for finite length of source region
Ž .Greenberg, 1971 . The Helmholtz equation in constant water depth h for the complex

Ž .variable of surface elevation h x, y is given by

h qh qk 2hs0 52Ž .x x y y

where subscripts denote partial derivatives with respect to x and y, and k is the
2 Ž .wavenumber which is determined from the linear dispersion relation v sgk tanh kh .

Ž X X .For an infinite domain with a point source located at x , y , the solution of the
Ž .corresponding wave field at any point x, y is given by

h x , y sA J kr q iY kr 53Ž . Ž . Ž . Ž .0 0

Žwhere A is a constant to be determined from the boundary condition e.g., wave height
.and phase at a specific point , J and Y are first and second kinds of Bessel function of0 0

Ž .zero order, i is the unit imaginary number, and r is the distance between point x, y
Ž X X.and point x , y , which is defined as

2 2X X(rs xyx q yyy . 54Ž . Ž . Ž .
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ŽFor a source region with finite dimension as that used in the numerical model i.e.,
.x -x-x , y -y-y , the corresponding solution is1 2 1 2

y x2 2 X X X X
h x , y sA f x , y J kr q iY kr d x d y 55Ž . Ž . Ž . Ž . Ž .H H 0 0

y x1 1

Ž X X.where A is a constant to be determined from desired wave condition, f x , y is the
variation of the desired wave in the source region. In order to compare the analytical
solution with the numerical model, we define

f xX , yXŽ .
2X X X X Xexp yb x yx q i lx ql y qj , x -x -x , y -y -y ;Ž . Ž .s 1 2 1 2s ½0, otherwise

56Ž .
where x is the center source line location, b is the width parameter of source functions

Ž .determined by Eq. 47 from the numerical model, x , x , y and y are the boundary1 2 1 2

coordinate of the source region, l and l are the wavenumbers in x and y directions, and
j is the phase constant to be determined.

Now we obtain wave fields generated by the analytical solution and by the numerical
model. The wave to be generated has a period of Ts1 s and an amplitude of a s40

cm, with propagation direction as the x axis. The domain is shown in Fig. 10. The
dimension of the domain is L sL s20 m and the water depth is constant across thex y

domain with hs0.45 m. To demonstrate the effect of wave diffraction, we choose a
Žsmall source region whose center source line is located from point xs2 m, ysy s51

. Ž . < <m to point xs2 m, ysy s15 m . The width of the source region Ws x yx is2 2 1

about 0.45 m.
The analytical solution for the wave field at an instance is obtained by taking the real
Ž . Ž . Ž .part or the imaginary part of h x, y from Eq. 5 . Wave amplitude is obtained by

Ž .taking the module of h x, y . The constant A is determined by the condition that the
averaged wave amplitude along the domain center line in x axis is equal to the desired

Fig. 10. Computational domain for comparison between the analytical solution and the model.
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Ž .wave amplitude. Fig. 11 a shows the analytical solution of surface elevation, with the
Žphase constant specified as jsypr2 so that both phases of analytical solution and

.the numerical model are the same . The snapshot of surface elevation generated by the
Ž .numerical model at ts60 s is shown in Fig. 11 b . Both wave fields are quite similar.

Strong diffraction effect can be seen around the two ends of the center source line where
the source function amplitude drops abruptly to zero from a constant value.

Ž .Numerical integration is required to obtain the analytical solution defined in Eq. 55 .
The grid sizes for the numerical integration are chosen to be the same as those used in
the numerical model, which are D xs0.05 m and D ys0.1 m. The same b value is
used in both cases, i.e., bs36.3 my2 .

Ž .The snapshot shown in Fig. 11 b is obtained by running the model for sufficiently
long and a steady state wave field is reached. To reduce the effect of reflection due to
limited domain size, 2 m wide sponge layers are added to all four sides. Therefore, the

Ž . Ž .Fig. 11. Comparison of 2D wave fields: a analytical solution; b numerical model.
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actual computational domain for the model is 24 m by 24 m, though a domain size of 20
Ž .m by 20 m is shown in Fig. 11 b . The time step for the model is chosen to be D ts0.01

s. The governing equations for the model is the linearized form of Nwogu’s extended
Boussinesq equations.

To better quantify the comparison, five cross-sections along x axis are made for the
wave fields generated by the model and by the analytical solution. Fig. 12 shows the
comparison of the cross-sections. Except for the source region center at xs2 m, there
is little difference for the surface elevations between the model results and the analytical
solution. The model is proved to be capable of generating the correct wave field.

Due to extremely short source region, the diffraction effect shown in Fig. 11 is quite
large and the resulting wave field is not acceptable. In order for the model to generate a
reasonable wave field, we need to increase the length of the source region. In the actual
model application, the length of the source region is taken to be the same as L , they

domain dimension in y axis. To evaluate the effect of source region length on the
uniformity of the wave field, we run the model with different values of L to generatey

Žthe same desired wave as shown in Fig. 11 i.e., wave period Ts1.0 s, wave amplitude
. Žh s4 cm and wave direction us08 . Along the domain center line in x direction i.e.,0

.at ysL r2 , time series data of surface elevation are collected and the correspondingy

wave heights are obtained. Fig. 13 shows the comparison of wave height variation for
different domain sizes. As expected, the diffraction effect to the wave field in the center
region decreases as the domain size in y direction increases.

Ž . ŽFig. 12. Comparison of surface elevation between the model dashed line and the analytical solution solid
.line .
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Fig. 13. Wave height variation from the model for different source lengths.

The diffraction effect also depends on the treatment of the side boundaries. If we use
reflecting boundary conditions on the side, then there will be infinite number of the
mirror image for the source region, making the effective source region length infinite. If
we use sponge layers on the sides, the source region will be effectively cut off to a finite
length, with maximum value to be L , the domain size in y axis. The diffraction effecty

will affect the uniformity of the generated wave field. For the case of zero incident wave
angle in a flat bathymetry, we can use the model with finite domain size L to generatey

a wave field without diffraction effect. The wave height variation in Fig. 13 correspond-
ing to this case is shown by L s`. The slightly higher value of wave height withy

L s` may be due to the small reflection effect from sponge layers on both left andy

right ends of the domain. Increasing the sponge layer size will decrease the discrepancy.

3.3.2. Comparison to experiment
To illustrate the importance of wave refraction and diffraction effect over complex

Ž .bathymetry, Berkhoff et al. 1982 conducted a laboratory study of 2D monochromatic
wave propagation over a plane beach with an elliptic shoal. The experiment layout and
the transects for collecting wave data are shown schematically in Fig. 14. Monochro-
matic wave with period Ts1 s and amplitude h s2.32 cm is generated by a0

wavemaker at ysy10 m. The bottom bathymetry consists of an elliptic shoal resting
on a plane beach with a constant slope of 1r50. The bottom contours on the slope are
oriented at an angle of 208. Detailed formula for the bottom bathymetry can be found in
Ž .Berkhoff et al., 1982 .

Ž .Due to the relatively large kh value khs1.9 in the region of the wavemaker ,
Ž .standard Boussinesq equations of Peregrine 1967 are not valid for the simulation.

Ž .However, the extended Boussinesq equations of Nwogu 1993 can be applied to this
Ž .case, as shown by Wei and Kirby 1995 . The wavemaker boundary condition used in

Ž .Wei and Kirby, 1995 is based on a conventional method, i.e., by combining specified
incident wave condition with radiation condition. The simulation had to be terminated at
about ts35 s when large reflected waves reached the wavemaker boundary, which
affects the accuracy of the model.



( )G. Wei et al.rCoastal Engineering 36 1999 271–299292

Ž .Fig. 14. Bottom geometry of the experiment of Berkhoff et al. 1982 .

By using the source function method, the reflected waves reaching the wavemaker
boundary are effectively dissipated by the sponge layer behind the source region. We
run the model with the source function method to ts50 s without any stability

Žproblems. The grid sizes used in the model are D ys0.05 m in the direction of wave
.propagation , and D xs0.1 m, and the time step is D ts0.01 s. Sponge layers of 3 m

wide are placed behind the source region and on the far end of the domain. Totally
reflecting walls are placed on the two side boundaries, which is equivalent to having
infinite length of source region.

Fig. 15 shows the comparison of wave amplitude along all the eight transects
between the experimental data and the model results. The wave amplitude for the model

Žis obtained by averaging those of the last four wave periods of simulation i.e., from
.ts46 s to ts50 s . The agreement between data and model is excellent. These results
Ž . Žare also presented in Kirby, 1997 . Compared to the results shown in Wei and Kirby,

.1995 based on traditional method, the accuracy obtained using the source function
method increases significantly.

The model results shown in Fig. 15 are based on the extended Boussinesq equations
Ž .derived by Nwogu 1993 . We also run the model based on the fully nonlinear

Ž .Boussinesq model of Wei et al. 1995 , with the same model parameters. Though
Ž .nonlinearity is very important for the example Kirby and Dalrymple, 1984 , there is

little difference between the results based on these two sets of equations. We conclude
that nonlinearity is not strong enough to distinguish the weakly and strong nonlinear
effects.
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Ž . Ž .Fig. 15. Wave height comparison between model and data ( ( ( along different transects for
Ž .the experiment of Berkhoff et al. 1982 .

3.4. 2D random waÕe

Similar to the case of 1D random wave, we can generate time series of the source
Ž .function along the source line F y,t from the time series of surface elevation along that

Ž .line h y,t . These two functions are defined as
1

h y ,t s h l,v exp i l yyv t dvdl 57Ž . Ž . Ž . Ž .HH 024p
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1
F y ,t s D l,v exp i l yyv t dvdl 58Ž . Ž . Ž . Ž .HH24p

Ž . Ž . Ž .where relation between h l,v and D l,v is defined by Eq. 36 . In practice,0

however, it is not possible to provide the required time series of surface elevation for
every grid point along the source line. Therefore, the time series of source function

Ž .along the source line F y,t in the model is mostly generated by a given input wave
spectrum.

Two methods can be applied to obtain the corresponding time series of source
Ž .function F y,t . The first method is to use 2D FFT method. Given the wave spectrum

Ž .including the frequency spectrum and the direction spectrum , the amplitude of the
Ž .surface elevation h corresponding to frequency v and y direction wavenumber l0 i, j i j

is first obtained. The corresponding amplitude of the source function D for eachi, j
Ž .component is then determined from Eq. 36 . Adding random phase to each component

Ž .gives the complex Fourier coefficient for the source function F y,t . Applying inverse
Ž .FFT to the complex Fourier coefficients, the time series of source function F y,t is

then determined.
The second method is direct computation. By dividing the 2D wave spectrum into N

components in the frequency domain and M components in the directional domain, we
Ž .first obtain the amplitude of surface elevation h for each wave component with0 i, j

Ž .frequency v and direction angle u or wavenumber in y-axis l sk sinu . Thei j i, j i j
Ž .corresponding amplitude of source function D is then obtained from Eq. 36 . Theni, j

the time series of source function for the random wave is given by

N M

F y ,t s D cos v tyk cos u yqj 59Ž . Ž .Ž .Ž .Ý Ý i , j i i j i , j
is1 js1

Ž .where j is random phase whose value is in the range of 0,2p .i, j

Fig. 16 shows a snapshot of random wave field at ts200 s generated by direct
method on a flat bottom with depth hs0.45 m. The numbers of grid points are
mxs201 and nys401, grid sizes are D xsD ys0.1 m, and time step D ts0.01 s.
The input random wave is based on the same TMA spectrum as that in the experiment

Ž .of Vincent and Briggs 1988 for case N1, with peak wave period T s1.3 s, inputp

significant wave height H s7.75 cm, frequency distribution parameter gs2, ands

directional spreading parameter s s108. We use direct method in the model tom

generate the time series of source function. The number of frequency components is
Ns80 and the number of directional components is Ms40. The spectra are divided
such that the energy for each component is approximately the same. The source region
for the model is located at xs2 m and from ys0 m to ys40 m.

Though the wave field shown in Fig. 16 looks quite random, the majority of the
waves are traveling in the x direction, as evident by the wave crest lines which are
approximately in y direction. This result is consistent with the input parameter in the

Ž .model for narrow directional spreading s s108 . To evaluate the model quantita-m
Ž .tively, we run the model for sufficiently long to 400 s and record the time series data

of surface elevation at selected locations, from which we compute statistical properties
of the random wave field. Due to zero initial condition used in the model, the first 20 s
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Fig. 16. Snapshot of 2D random wave field at ts200 s generated by the model.

of data is discarded for statistical computation. The time step for the collected time
series of data is D ts0.02 s. Using zero upcrossing method, we obtain the correspond-
ing significant wave heights. Table 1 shows the results of wave heights and the
coordinates of these 20 gauge locations.

Table 1
Ž .Distribution of significant wave height in cm

xs3 m xs5 m xs7 m xs10 m

ys15 m 7.20 6.93 6.79 6.74
ys18 m 7.60 7.54 7.41 7.29
ys20 m 7.43 7.56 7.70 7.68
ys22 m 6.89 6.78 6.75 6.74
ys25 m 6.71 6.80 6.92 7.34
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The significant wave heights shown in Table 1 exhibit deviations for different
gauges. These deviations are expected for any statistical properties from a random wave
field. The normalized standard deviation of the significant wave heights for all 20
gauges is ss5.14%. If we run the model for longer simulation and collect more time
series of data, the deviation of statistical properties between different points will be
reduced. The averaged value of the significant wave heights for all 20 gauge is 7.14 cm,
which is about 8% smaller than the input value of H s7.75 cm. To investigate thiss

problem, we obtain 20 sets of the time series of surface elevation along the source line

Ž . Ž . Ž .Fig. 17. a Computed 2D spectrum; b frequency spectrum; c directional spectrum for peak frequency. In
Ž . Ž .b and c , solid line is the input spectrum and dashed line is the computed spectrum.
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directly from the input spectrum. The mean value of the significant wave heights for
these 20 sets is 7.28 cm, which is also smaller than the input value. We notice that the
difference between the significant wave height obtained from spectrum and that obtained
from time series data is the major factor for this discrepancy between the input value
and those in Table 1. Other factors may also contribute to this discrepancy. These
factors include the diffraction effect due to the finite length of source region, the
dissipation due to absorbing boundary condition on the sides, and the dissipation by
applying numerical filter in the model.

To further examine the generated wave field, we compute the corresponding 2D
spectrum and compare the averaged frequency spectrum and the directional spectrum at
the peak frequency to the input spectrum, as shown in Fig. 17. The maximum likelihood

Ž .method MLM is used to evaluate the spectrum from the time series of surface
elevation surface elevations at four gauge locations. The coordinates of the gauges are

Ž .xs4 m and ys 19 m, 19.5 m, 20 m, 20.5 m . In spectrum computation, the time
series data at each location is divided into 18 segments, each of which consists of 1024
points of data, with D ts0.02 s. FFT is performed to each segment of data and
frequency spectrum in Fig. 17 is the averaged for all the segments in four gauges. The
agreement between the input and computed spectrum is good, indicating that the model
generates random waves with the desired spectrum.

4. Tidal effects

In model applications where the source function method is combined with absorbing
sponge layers to damp backward propagating and reflected wave energy, model bound-
aries may simply be specified as being closed. In this situation, tidal effects may be
easily induced in the model by adding or subtracting mass through the source term in

Ž . ŽEq. 8 . Note that this effect may not be obtained using the applied pressure distribution
Ž .in Eq. 37 , as the response to a steady or quasi-steady pressure forcing would simply be

.an inverse-barometer distortion to the surface in the region of the source. In this case,
we establish a characteristic time scale for the model as L rc , where L is them 0 m

horizontal scale of the model and c is a characteristic long wave speed for the model.0

For any physical process which adds or drains mass from the model domain, and which
has a characteristic time scale T which is large compared to the model characteristic0

time scale, it may be assumed that the surface elevation changes uniformly in response
Ž .to the added or subtracted mass. Returning to Eq. 8 , we may write the mass

conservation equation as

h q=PMsF x s t 60Ž . Ž . Ž .t

where M is the mass flux vector and x is vector position. Denoting the model domain
Ž .by V and its boundary by EV , we integrate Eq. 60 over V and apply the divergence

theorem to obtain

d
hd xq MPnd ls F x d xs t . 61Ž . Ž . Ž .H H HH

d t V EV V
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For long timescale motions where we can assume that h is effectively uniform over V ,
we denote the area of V by AA and obtain

dh
AA q MPnd ls F x d xs t . 62Ž . Ž . Ž .H HH

d t EV V

Changes in mean water level in the model can obviously be induced either by mass flux
Ž .across model boundaries expressed by the line integral or addition of mass through the

Ž .source expressed by the RHS of the two preceding equations . Neglecting the first
Ž .effect, we obtain the control signal s t as

AA dh
s t s . 63Ž . Ž .

d t
F x d xŽ .HH

V

The signal depends only on the rate of change of the surface, the area of the model, and
the integrated volume of the source function distribution. For the Gaussian source
function proposed above, we have

` p
2F x d xs exp yb x d xs . 64Ž . Ž .Ž .H H (by`

5. Conclusions

We derived the theory for wave generation by internal source function for Boussi-
nesq-type equations. Solutions to linearized governing equations are obtained using the
Green’s function method. The source function amplitude is related to the characteristics
of the desired incident wave as well as to the width of source region. For random wave
generation, the width of the source region is the same for all components of the wave to
reduce the computation time.

We applied the model to study several cases of wave generation and propagation,
including monochromatic waves and random waves, in both one and two dimensions.
Model results are compared with experimental data for 1D random wave and for 2D
monochromatic waves. The agreement between the data and model results is quite good.
For 2D monochromatic wave with finite source length, we obtained the analytical
solution to the Helmholtz equation. Good agreement between analytical solution and
model result is found. We tested the model to generate a random wave in 2D with a
given spectrum in a flat bottom domain. We obtained the time series of surface elevation
at selected locations and computed the corresponding significant wave heights at these
locations are obtained. We also computed the spectrum of the wave field based on
Maximum Likelihood Method and compared with input spectrum. Model results indicate
that the wave field generated by internal source function method is quite reasonable.

Diffraction effect becomes large if the length of the source line is small, or if the
angle between the wave direction and the source line becomes small. To generate the
desirable wave accurately in two dimension, large domain size in source line direction is
required.
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We are currently running the model to simulate 2D random wave propagation over
complex bathymetry. Comparison between the model and data will be presented
elsewhere.
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