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A large amount of researches and studies have been recently performed by applying statistical methods
for vibration-based damage detection. However, the global character inherent to the limited number of
modal properties issued from operational modal analysis may be not appropriate for early damage, which
has generally a local character.

The present paper aims at detecting this type of damage by using static SHM data and by assuming that
early damage produces dead load redistribution. To achieve this objective a data driven strategy is
proposed, consisting in the combination of advanced multivariate statistical methods and quantities,
such as principal components, symbolic data and cluster analysis.

From this analysis it was observed that, under the noise levels measured on site, the proposed strategy
is able to automatically detect stiffness reduction in stay cables reaching at least 1%.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Structural Health Monitoring (SHM) can be defined as the
development and application of strategies to identify abnormal
behaviors (such as damage) in structural systems [1]. In civil
engineering structures, damage may lead to expensive mainte-
nance actions and, if it occurs with significant magnitude, may re-
sult in dramatic social and human consequences. An efficient SHM
should aim at identifying damage in an early stage, which is gener-
ally related to local phenomena with small magnitude.

Damage identification has been extensively studied in the
framework of mechanical, airspace and civil engineering structural
systems by using model based or data driven approaches [1,2]. The
first type typically aims at identifying damage by fitting a numer-
ical model to real data, a procedure which is usually combined
with optimization techniques. Conversely, data driven approaches
are usually based on data processing obtained from monitoring
without relying on a priori models.

Damage detection has been described in the literature as a
four-level scale [3]: (i) damage detection, (ii) localization, (iii) type
and severity assessment and (iv) lifetime prediction update. While
the first and second levels can be carried out by data driven meth-
ods alone, the fourth (and partly the third stage) level requires the
use of numerical models. The last two levels may also require local
non-destructive testing, visual inspection, human expertise and
additional theoretical concepts such as fracture mechanics or fati-
gue analysis to enhance the damage detection analysis [4].

This paper is mainly focused on the first level of the previous
scale (damage detection) by means of data driven techniques:
early damage detection is targeted. To fulfill this objective, three
main operations are required after data acquisition [5]: (i) feature
extraction, (ii) data normalization and (iii) statistical classification.

Damage sensitive feature extraction is mandatory for early
damage detection approaches since the acquired data, alone, may
not be informative about the presence of damage. Modal or mod-
al-based quantities are by far the most reported features in the lit-
erature [6–8]. Autoregressive models [9–11] and wavelet
components [9,12,13] have also been reported as damage sensitive
feature extractors for both static and dynamic monitoring. Princi-
pal component analysis (PCA) is usually applied after feature
extraction for dimensionality reduction. However, for long-term
static monitoring, Posenato et al. [9], showed that damage sensi-
tive features can also be obtained from this multivariate statistical
method. Symbolic data have shown to be useful in compressing
and representing data without loss of information [14] and proved
to be a sensitive feature extractor, by Cury et al. [15,16], in SHM
works applied to bridges.
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Data Normalization can be defined as the process of separating
data changes caused by environmental and operational effects
from those caused by damage occurrences [17]. This process is cru-
cial for early damage detection and false alarm prevention since
environmental conditions, such as temperature, may impose larger
variations than those due to damage [18,19]. It was observed that
modal quantities can change by 17% [20] due to seasonal temper-
ature and by 5% on a single daily cycle [21], a fact which is mainly
due to changes in structural stiffness and boundary conditions
[17]. For static based monitoring, temperature can impose complex
and important structural changes, which are generated by the in-
duced strain on each structural element. Assuming that dynamic
effects like traffic and wind are properly filtered in situ by on-line
monitoring systems [22–24], this action is usually the only requir-
ing normalization.

Several normalization strategies are available based in regres-
sion methods such as Multivariate Linear Regression, Multi-Layer
Perceptron Neural Networks or Support Vector Regression
[16,18,19,25,26]. However, these are greatly dependent on an
appropriate characterization of temperature effects throughout
the target structure. When monitoring applications do not include
broad temperature measurement, latent variable methods may be
more efficient in normalizing temperature effects. These methods
are able to characterize and suppress independent actions and ef-
fects using only structural measurements. Among these, the prin-
cipal component analysis (PCA) [6,27] has been found very
efficient, even if restricted to linear effects.

Statistical classification aims at distinguishing damaged from
undamaged related data. It can be divided into supervised meth-
ods, which require knowledge (sensitive features) from both dam-
aged and undamaged states, and unsupervised ones, which are
frequently used to detect deviations from an undamaged baseline
structural state (a procedure known as novelty detection). Since
data obtained from damaged structures is scarce or inexistent,
unsupervised techniques have been used more often for damage
detection purposes [5]. Most of these are based in outlier detection,
carried out after a training procedure over a period in which struc-
tures are assumed undamaged. This procedure is known as Statis-
tical Process Control and can be performed on single variables
[6,28] or multivariate data sets [29,30]. Cluster analysis can be seen
as an alternative to this approach since it enables to distinguish
different groups in data without any prior knowledge or known
reference baseline. Even though this type of unsupervised analysis
has been reported has an efficient damage detection approach
[31,32], the limited structural representativeness of measured data
(static or dynamic) and its computational complexity have discour-
aged its use in SHM of large civil structures. To circumvent these
disadvantages, symbolic dissimilarity measures have been used
as input on cluster analysis, providing greater structural represen-
tativeness and smaller computational complexity [7,16,33].

The large majority of data-driven damage detection methods
are vibration-based approaches [4,5,7,8,28]. Based on the assump-
tion that damage produces changes in structural stiffness, feature
extraction is made with frequencies, mode shapes or damping ra-
tios. The global character of these features makes damage detec-
tion algorithms less sensitive to early damage which has, in
general, a local character [1,5,34]. Furthermore, dynamic SHM sys-
tems require fast, solid-state relay switching data loggers, with
dedicated high resolution analog-to-digital converters (ADC) and
precision accelerometers, which are not only sensitive to ambient
noise but also make SHM systems extremely expensive.

Static based SHM systems can be deployed with less cost. But,
surprisingly, not so many works report damage detection using
static SHM data in civil structures. Recently, numerical detection
and localization was performed under the principle that damage
produces changes in measured effects generated by dead loads
[1,35]. However, its application was carried out based in optimiza-
tion procedures and on simple theoretical structures. A similar
optimization procedure, based on the same principle, was applied
to a cable-stayed bridge numerical model [34] considering, as
monitored quantities, the forces in all the stay cables of a bridge
and without taking into account environmental influences. This
method did not gain attention in the SHM active fields of mechan-
ical or aerospace systems since its application requires that dead
load effects must prevail significantly above the remaining ones
[1], a fact which, in general, is only observed in civil engineering
structures.

This paper attempts to provide answers to the above questions:

– development of an automatic unsupervised data driven strategy
for early damage detection by continuously controlling dead
load redistribution effects,

– feature extraction by selecting appropriate principal
components,

– data normalization by eliminating spurious principal
components,

– statistical classification by transforming features into symbolic
objects and by enhancing detection with cluster analysis.

To address all these topics and to show the efficiency of the
developed procedure, a cable stayed bridge located at the South
of the Iberian Peninsula was used as case study. A numerical model
was performed and calibrated according to experimental modal
data [36]. Damage occurrence was simulated by performing finite
element time-history analysis using, as input, time series of real
temperature and noise effects measured on site. Section 2 of the
paper describes the case study, the numerical model and the dam-
age simulation procedure while Section 3 details the feature
extraction/data normalization/damage classification procedure. In
Section 4, conclusions are drawn by discussing the obtained
results.
2. Case study – International Bridge over River Guadiana

2.1. Description of the structure and the SHM system

The International Bridge over River Guadiana (Fig. 1) is a cable-
stayed bridge located in the South West of the Iberian Peninsula,
and was built to connect the regions of Algarve (Portugal) and And-
alucía (Spain). The bridge has a central span of 324 m and two lat-
eral and transition spans of 135 m and 36 m, respectively. The deck
is a pre-stressed concrete box girder with 18 m wide and 2.5 m
high, which is suspended by one hundred and twenty-eight stay
cables that are composed by individually sheathed mono strands,
varying from 22 to 55 (Fig. 1a). Their length varies from 48 m to
167 m, and the stay cables are equally spaced every 9.0 m on the
deck and every 1.8 m on the pylons. Shorter cables are clamped
at mid length while longer at third length. The A-shaped pylons
are 95 m and 96 m high and consist in concrete hollow sections
which, besides anchoring the cables, support the deck at a height
of 35 m by means of hollow section transverse beam.

The bridge was open to traffic in 1991 and was the target of
extensive studies prior, during and after construction. In addition,
a permanent monitoring system consisting of acoustic strain gages
and resistance thermometers was installed for periodic manual
data acquisition. In December 2010 an autonomous on-line SHM
system [22–24], was installed on the bridge with the aim of carry-
ing out early damage detection thus contributing to an increase in
safety and to a reduction of maintenance costs. Sensors’ location
(Fig. 1b) was based on the principle that any damage in a cable
stayed bridge may be revealed by load redistribution in cables’ ten-



Fig. 1. International Bridge over River Guadiana: (a) side schematic view and (b) SHM sensors.
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sion, with displacement and rotation changes close to the anchor-
ages. Load cells, which would directly measure the cables’ forces,
were not installed and are usually avoided due to operational, eco-
nomical and applicability constraints. Instead, hydrostatic pressure
cells (named as NL throughout the present paper) and magneto-
strictive transducers (named herein as DH) were respectively used
for measuring deck and joint displacements. Bi-axial inclinometers
(named herein as CL) were installed on the top of the pylons. Infra-
structure differential displacements and rotations are also con-
trolled using the same type of inclinometers (CL), installed in
each foundation and abutment (Fig. 1b).

Data acquisition is carried out synchronously and hourly by a
locally deployed industrial computer. Each hour, scale and covari-
ance robust estimators are computed and compared to thresholds
established by outlier and goodness-of-fit statistical tests. This
strategy successfully removes values related to sensor malfunction
and dynamical effects such as wind and traffic [22–24]. Data is sent
daily to an FTP server which is hourly queried by a routine that
automatically stores data in a MySQL database server [22].

2.2. Numerical simulation

Structural behavior is simulated, in the present work, by run-
ning finite element time-history analysis using only experimental
data as input. The tri-dimensional numerical model is geometri-
cally and physically linear for the sake of computational simplicity
and is composed of (Fig. 2) 404 beam elements and 543 nodes,
reproducing the geometry of the original design. Stay cables were
defined as beam elements free of bending moments and compres-
sion. Piles’ shafts were continuously restrained by linear elastic
Winkler springs with stiffness values varying from 24 MN/m to
105 MN/m, according to the design studies. The Young Modulus
and unitary weights were defined as Ec = 42 GPa and cc = 25 kN/
m3 for concrete and Esp = 195 GPa and csp = 78.5 kN/m3 for stay
cable steel [36]. Coefficients of linear thermal expansion are asp

= 1.2 �C�1 and ac = 1.0 �C�1 for stay cable steel and concrete,
respectively.

To guarantee that the numerical model accurately simulates the
structural behavior of the bridge, its natural frequencies were com-
pared with those identified in the last experimental modal analysis
performed and reported in [36]. Fig. 3 shows the good agreement
between the natural frequencies obtained using the developed
numerical model and the ones obtained experimentally. In Table
1, both quantities are presented as well as the associated fitting er-
ror, FE, defined in percentage as,

FEi ¼ jfi;exp � fi;numj=fi;exp � 100 ð1Þ

where fi,num and fi,exp are the numerical and experimental frequen-
cies obtained for mode i. The average value of this error, across
the identified mode shapes, is 1.76%.The time-history numerical
simulation aims at reproducing, as truthfully as possible, the struc-
tural behavior using as input measured temperature and noise data
(Fig. 4). Measured temperature data (average temperatures in deck,
pylons and cables, and differential temperature in the latter two)
are used as input in the numerical time-history simulation
(Fig. 5a–c). This analysis generates simulated displacements and
rotations (Fig. 5e). To obtain the most similar and trustworthy
reproduction of the real SHM data, the uniformly distributed noise
(Fig. 5d) measured on site by the sensors is added to the numerical
output.Uniform noise distributions with 300 and 0.1 mm spans were
observed for rotations and displacements, respectively. Each time
series used in the numerical simulation is constituted by over
6500 data points, spanning a 9 months period (11th of January
2011 to the 1st of February 2012). The gaps shown in the time series
of Figs. 5a, e and 6 are related to maintenance actions carried out by
the structure’s owner on the bridge’s power supply system.

Damage is simulated by applying controlled temperature time
series (Fig. 5b) to selected stay cables. The applied temperature



Fig. 2. Numerical model: (a) lateral view and (b) perspective view.
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Fig. 3. Experimental and numerical natural frequencies.

Table 1
Experimental and numerical natural frequencies, mode shapes and fitting error.

Numerical model Experimental FE (%) Mode type

Mode f (Hz) Mode f (Hz)

1 0.391 1 0.391 0.00 1st VS
2 0.508 2 0.537 5.49 1st LS
3 0.557 3 0.566 1.66 1st VAS
4 0.827 4 0.845 2.11 2nd VS
5 0.946 5 0.952 0.60 2nd VAS
6 1.045 6 1.035 0.95 3rd VS
7 1.302 7 1.299 0.25 3rd VAS
8 1.403 8 1.450 3.21 1st LAS

11 1.652 12 1.660 0.46 4th VS
13 1.824 14 1.812 0.65 4th VAS
15 1.927 15 1.880 2.48 5th VS
19 2.323 20 2.251 3.21 5th VAS

VS – vertical symmetric; LS – lateral symmetric; VAS – vertical anti-symmetric; LAS
– lateral anti-symmetric.
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values were calculated to reproduce equivalent stiffness losses un-
der dead load. This numerical simulation procedure is used to
Fig. 4. Acquisition of real and
accurately reproduce damage scenarios and to test the novel data
driven proposed strategy.

To conduct the analyses carried out herein and explained in the
following section, time-series of 15 structural measurements were
obtained for several numerically simulated scenarios. Fig. 6 pre-
sents these series for an undamaged scenario. The locations of
the 15 sensors, installed in the real structure, can be found in
Fig. 1, where CL2 and CL5 are bi-axial inclinometers capable of
measuring rotations along the longitudinal and transversal hori-
zontal axes of the structure (suffixes ‘‘L’’ and ‘‘T’’ in Fig. 6, respec-
tively). By comparing Figs. 5a and 6, a high correlation between
the 15 simulated structural quantities and the temperatures mea-
sured on site can be observed.
3. Damage detection strategy

3.1. Principal component analysis

Principal component analysis (PCA), or Karhunen–Loève trans-
form, is a well-known multivariate statistical method which allows
obtaining, from a group of correlated variables, a set of linearly
uncorrelated vectors called principal components or scores [37].
In static SHM, where measurements are highly correlated, this
method can be useful to distinguish, without significant computa-
tional complexity, the uncorrelated (‘‘independent’’) effects gener-
ated by different loads acting on a structure.

Let us consider a centered data matrix Xnxp, with n measure-
ments performed in p sensors, The PCA consists in a linear mapping
between the original variables, Xnxp, and the principal components,
Ynxp, as follows,

Ynxp ¼ UpxpðXnxpÞT ð2Þ

where the orthonormal linear transformation matrix, Upxp, is given
by the solution of an eigenproblem formulated on the covariance or
correlation matrices of Xnxp. When using the covariance matrix of
Xnxp, the eigensolution takes into account the scales of different
variables, a fact that can bias the multivariate analysis of data ac-
quired from different types of sensors (with distinct measurement
numerical structural data.



Fig. 5. Numerical simulation procedure: (a) temperature input, (b) damage time series, (c) numerical model, (d) noise time series, and (e) numerical output time series. Time
index origin (day 0): 11th January 2011.

Fig. 6. Numerically generated measurements for the undamaged scenario. Time index origin (day 0): 11th January 2011.

J.P. Santos et al. / Engineering Structures 56 (2013) 273–285 277
magnitudes). When the correlation matrix Cpxp is used, a standard-
ized form of PCA [37] is then considered. Such a form is equivalent
to standardizing the original variables prior to the computation of
the covariance matrix. Hence, since the case study addressed herein
is based on data acquired from several types of sensors (as most of
monitoring applications), PCA is applied using the correlation ma-
trix, Cpxp, as shown in

CpxpUpxp ¼ KpxpUpxp ð3Þ

The Lambda matrix is a diagonal matrix with positive or null values
that are the eigenvalues of the correlation matrix. The transforma-
tion shown in Eq. (2) is defined such that each column of Ynxp (called
principal component – PC) corresponds to the higher value of Lamb-
da under the constraint of orthogonality to the preceding ones.
Hence, the elements of the diagonal matrix Kpxp are usually placed
in descending order. These values express the relative importance
of each principal component in the entire data set variation [6]
and are usually named as ‘‘active energies’’.

In static SHM, early damage can be outlined by PCA based on
the principle that, since it is generated by local dead load redistri-
bution, it produces distinct variations from environmental loading
acting globally on the structure [38]. From the damage simulation
it was observed that, regardless the fact that each PC is a linear
combination of all original variables (Eq. (2)), local dead load redis-
tribution produces clear shifts in one or two successive principal
component(s). Moreover, these simulations also allowed observing
that larger damage magnitudes produce more sensitive shifts in
higher ‘‘active energy’’ scores. These remarks were obtained by
observing the sets of all principal components obtained for each
damage scenario simulated. Examples of shifts are given in Fig. 7
for damage simulations on stay cable 78: this cable is located in
the central span at approximately mid-fan and is sustaining a dead
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load force of 2676 kN. Simulated stiffness reductions consist in 1%,
2%, 5% and 10%, occurring instantly on the 1st of July, 2011. For this
stay cable, the stiffness reduction percentages correspond to the
rupture of approximately 2, 4, 11 and 22 wires respectively, out
of the 217 wires gathered in the 31 mono strands.

To assess which principal components seem to be affected by
local dead load redistribution, Kolmogorov–Smirnov (K–S) good-
ness-of-fit tests [39] are performed on each of the 15 principal
components. Each K–S test is performed on pairs of principal com-
ponents of the same order. In each pair, one of the components is
obtained from the undamaged reference state and the other from
one of the damage scenarios. The results of this analysis are sum-
marized in Fig. 8, where a p-value close to 1.0 suggests that the
principal component is independent from the corresponding dam-
age scenario. For the undamaged scenario, it can be observed that
all principal components are reported as independent from dam-
age, with p-values equal to 1.0. From this figure it can also be ob-
served that, for the four damage magnitudes tested, the first five
principal components seem not to be influenced by damage and
are therefore assumed to be related to global variations caused
by temperature.

As observed in Fig. 8, PCA is able to retain meaningful informa-
tion, related to global effects such as temperature, in the first axes
whereas variations related to measurement inaccuracy, noise or
other small magnitude effects such as early damage, may be sum-
marized in latter axes. However, the issue of determining whether
or not a given axis summarizes meaningful variation remains un-
clear in many cases. When the correct number of principal compo-
nents is not retained for subsequent analysis, either relevant
information is lost (underestimation) or surplus effects are in-
cluded (overestimation), causing sensitivity of damage detection
algorithms to decrease. Determining the number of meaningful
principal components remains one of the greatest challenges in
providing a truthful interpretation of multivariate data. This has
been a long-standing issue in both biological and statistical litera-
ture, and a variety of stopping rules have been proposed for its esti-
mation without resorting to external comparison or baseline
information [37,40]. These rules include the establishment of
eigenvalues’ distributions which are directly compared to the ones
extracted from data. Principal components extracted from data
exhibiting greater values than the ones provided by the rules are
Fig. 7. Principal components obtained for the simulations of instantaneous stiffness re
January 2011.
considered meaningful [41]. Since the aim of the present work is
to detect early damage, which has generally a local character, the
normalization procedure consists, thus, in removing the meaning-
ful principal components from the data set and retaining the
remaining ones for subsequent statistical analysis.

Among the different stopping rules found in the literature, the
Kaiser–Guttmann parameter [41] is very popular: it consists in
considering as meaningful only principal components with eigen-
values, kk, larger than 1 (constant eigenvalue distribution across
all components). The Kaiser–Guttmann parameter was tested on
the five simulated scenarios and returned three as the amount of
meaningful principal components related to global effects, as can
be observed in Fig. 9. According to this rule, data normalization
would consist in removing these components, a result which is
not in agreement with the baseline analysis performed using the
K–S statistical test.

Another stopping rule is based in the Broken-Stick method. The
idea of this rule is that if a stick is randomly broken into p pieces, b1

would be the expected value of the largest piece in each set of bro-
ken sticks; b2 the expected value of the second largest piece, and so
on. In the case of correlation matrices (i.e., standardized variables),
p equals both the number of components and the sum of the eigen-
values, kk, and the proportion of total variation associated with the
eigenvalue of the kth component, according to the Broken-Stick
model, is obtained from

bk ¼ bðp; kÞ ¼ 1
p

Xp

i¼k

1
i

ð4Þ

If the kth component has an eigenvalue larger than bk, then the
component is considered as related to global effects and removed
for data normalization. The factor 1/p is included in Eq. (4) when
the correlation matrix of Xnxp is used to perform PCA. When the
covariance matrix is used, this factor is suppressed.

One the main advantages of both rules described herein is their
non-dependence of the acquired data, making the choice of the
number of principal components independent from the existence
of damage. While the Kaiser–Guttmann is based on a simple
threshold (kk P 1) regardless the value of p, the Broken-Stick
method takes only this parameter into account for the definition
of the Broken-Stick eigenvalue distribution. Considering that a
ductions in stay cable 78, on the 1st of July 2011. Time index origin (day 0): 11th



Fig. 8. Kolmogorov–Smirnov goodness-of-fit for the simulations of instantaneous stiffness reductions in stay cable 78, on the 1st of July 2011.

Fig. 9. PCA eigenvalues for the five simulation scenarios in stay cable 78. Bars represent the data’s eigenvalues (‘‘active energies’’) and lines the Kaiser–Guttmann and
Broken-Stick rules’ eigenvalues distributions.
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unit-length stick is broken into two pieces (two principal compo-
nents), the expected length for the larger piece, b1 = b(1, 1), can
be obtained according to Eq. (4),

b1 ¼ bð2;1Þ ¼ 1
2

X2

i¼1

1
i
¼ 1

2
1
1
þ 1

2

� �
¼ 3

4
ð5Þ

while the expected length of the smaller piece is,

b2 ¼ bð2;2Þ ¼ 1
2

X2

i¼2

1
i
¼ 1

2
1
2

� �
¼ 1

4
ð6Þ

Bearing in mind that the larger piece cannot measure less than ½
and that it is equally likely to be anywhere between ½ and 1, its ex-
pected value is naturally 3/4. Therefore, the shorter piece must ex-
hibit a length between 0 and ½ and its expected value is naturally
1=4. For a set of 15 measured variables (and principle components),
the Broken-Stick eigenvalue distribution, for correlation-based
PCA, is presented in Fig. 9. This distribution is, by definition, monot-
onous; however, the logarithmic representation used in the y-axis
of this figure provides a non-monotonous appearance to its line
plot.

Unlike the Kaiser–Guttmann, this method identified the first
five principal components as related to global effects, a result ob-
tained by observing which eigenvalues surpass the Broken-Stick
distribution in Fig. 9. This result is in agreement with the baseline
comparison performed with the Kolmogorov–Smirnov tests (Fig. 8)
and suggests that this method is efficient in distinguishing princi-
pal components related to temperature action from the ones re-
lated to early damage, with local character.

3.2. Symbolic data objects and dissimilarity measures

Symbolic data can be defined as a richer, less voluminous and
less specific type of information, when compared to classical data
[7,15,16]. While classical data mining focuses in detecting groups
or patterns in individual measurements, symbolic data deals with
concepts, which must be properly defined to statistically describe
the analyzed data. For instance, a week of measurements for the
data set considered in this work can be described by 2520 individ-
ual measurements (168 for each of the 15 sensors) or it can consist
of a single symbolic object named ‘‘week of acquired data’’. This
object must be described by statistical quantities such as histo-
grams or interquartile intervals providing data compression with-
out significant loss of generality or information [14]. In the case of
interquartile intervals, a week of data is reduced to only 30 values
(15 intervals). This type of statistical quantity has proved to be sen-
sitive enough in detecting structural changes [7,15,16] and is con-
sequently used in the present paper.

The effectiveness of symbolic data analysis in SHM heavily re-
lies on the definition of symbolic dissimilarities and distances be-
tween data objects [14,42]. These measures can supply numerical
values which reflect the distance between a pair of data objects.
In a common sense, the lower these values are the more similar
the objects may be according to their intrinsic features. Conversely,
the objects with the highest distances are the ones which evidence
greater discrepancies between them. A distance measure can
therefore be used to quantify similarities as well as dissimilarities
in data. Dissimilarity and distance measures can take a variety of
forms and some applications might require specific ones. For the
present work, three distinct symbolic dissimilarity measures were
considered (Appendix A): the Normalized Euclidean Ichino–Yag-
uchi distance [43], the Gowda–Diday dissimilarity measure [44]
and the Normalized Euclidean Hausdorff distance [42]. The choice
of a dissimilarity measure is an important step for any clustering
method and may strongly influence the shape of the clusters. This
point will be highlighted later in this section.

In the present work, symbolic data objects (Fig. 10) and dis-
tances (Fig. 11) are obtained from multivariate sets of principal
components, to combine them into univariate types of information.
As observed in Fig. 7, these multivariate sets contain damage-re-
lated information, composed by the shifts in the time-series of
principal components. However, depending of the magnitude of
the damage occurrences, these shifts may be observed in principal
components with different variation magnitudes (Fig. 7). When
these components are combined, using the theoretical background



Fig. 10. Symbolic objects of standardized principal components for 5% of instantaneous stiffness reduction in cable 78. Values presented in the y axis have no units and stand
for standard deviations: (a) classical data time series and (b) symbolic data series represented by the colored regions of box-and-whiskers plots.

Fig. 11. Cluster dissimilarities (unit-scale) for instantaneous 5% of stiffness reduction in cable 78: (a) Gowda–Diday dissimilarity measure, (b) Normalized Euclidean
Hausdorff distance, and (c) Normalized Euclidean Ichino–Yaguchi distance.
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presented in Appendix A, the shifts produced by damage with
smaller magnitude (top-right plots of Fig. 7), become less noticed
than the ones produced by more significant damaged (bottom-
right plots of Fig. 7). Hence, a simple and efficient procedure that
highly increases the sensitivity to early damage consists in stan-
dardizing the principal component data set prior to the definition
of symbolic objects and distances. This standardization grants sim-
ilar importance to all principal components, regardless of the mag-
nitude of damage that they highlight, and is performed as defined
in Eq. (7), where l(PCi), r(PCi) are the average and standard devia-
tion of PCi.

SPCi ¼
PCi � lðPCiÞ

rðPCiÞ
ð7Þ

Considering the simulation of a 5% instantaneous stiffness
reduction in stay cable 78 (Fig. 7), symbolic objects defined as
‘‘weeks of standardized principal components’’ were obtained
and described by ten interquartile intervals (corresponding to the
smaller ten principal components, obtained according to the Bro-
ken-Stick rule). Four series of these statistical quantities are pre-
sented by the colored regions of the box-and-whiskers plots
shown in Fig. 10b. By comparison with Fig. 10a, it can easily be ob-
served that, even though significant data compression took place,
damage-related shifts are present in both types of data and appear
to be outlined by the symbolic data. This fact seems to be related to
the stability and generalization capacity of interquartile values in
representing the data’s structure.

From the 43 symbolic objects, described by ten interquartile ob-
jects each, symbolic dissimilarity matrices have been obtained and
are presented in Fig. 11. These matrices contain the pair-wise dis-
similarities between all symbolic objects and constitute the input
for cluster analysis. As it can be observed in Fig. 11, variations re-
lated to small magnitude damage are clearly highlighted in this
type of information, where two distinct groups of data can be iden-
tified, regardless of the calculated dissimilarity. However, the Ich-
ino–Yaguchi dissimilarity (Fig. 11c) produces a more sensitive
outline of the effect of dead load redistribution than the other
two (Fig. 11a and b), leading to a better sensitivity, of the proposed
strategy, to early damage.
3.3. Cluster analysis

Clustering methods consist in unsupervised multivariate statis-
tical algorithms which aim at classifying objects as members of
different subsets (or clusters). Unlike supervised algorithms such
as decision trees or neural networks, clustering methods do not
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require previous information about the objects’ memberships,
which are obtained according to the data’s intrinsic characteristics,
or dissimilarities.

The aim of a clustering method can be defined as the division of
a data set into groups, which must be as compact and separated as
possible. To fulfill this objective, allocation rules must be defined
so that pair-wise dissimilarities between objects assigned to the
same cluster tend to be smaller than those allocated in different
clusters [7]. Let us consider a given partition containing K clusters,
Pk = {C1, . . . , Ck}. The within-cluster dissimilarity W(Pk) can be de-
fined as [45]:

WðPkÞ ¼
1
2

XK

k¼1

X
CðiÞ¼k

X
CðjÞ¼k

dij ð8Þ

where C(i) is an allocation rule which assigns element i to cluster k,
based on the dissimilarity measure dij. The total variation of data
can be defined as in Eq. (9), where N is the total number of objects
considered in the cluster analysis. Finally, B(Pk) can be simply ob-
tained by subtracting the other two defined distances,
B(Pk) = T �W(Pk).

T ¼ 1
2

XN

i¼1

XN

j¼1

dij ð9Þ

Each cluster can be described by a prototype, which generally
consists of an object of the same type as the ones being clustered.
The location of each prototype is obtained, in the present work, by
computing the centroid of the clusters’ members (Appendix B).

Several families of cluster methods can be found in the litera-
ture [45,46], however the most used are the combinatorial and
hierarchical methods. While the first is iterative in nature and re-
quires the input of an initial set of clusters’ prototypes (and their
centroids), the hierarchical methods provide a merging (or separa-
tion) hierarchy so that all partitions are defined, regardless of their
number of elements [45]. Hierarchical methods can be classified as
divisive (top-down) or agglomerative (bottom-up). Agglomerative
strategies start by considering single-object clusters and, at each
level, merge a selected pair of clusters into a new, single, cluster.
This merging produces a new level in the hierarchy (which con-
tains one less cluster). Divisive methods start by considering a sin-
gle cluster containing all objects and, at each level, split one of the
existing clusters into two new clusters. Both strategies generate
hierarchies with N � 1 levels, where N is the number of data ob-
jects. This hierarchy can be displayed in a dendrogram plot, which
is generically schematized in Fig. 12, and considered one of the
main advantages of hierarchical methods [45] since it allows for
a clear visualization of the structure of high dimensional data, in
a single and unambiguous plot.

In the present work, agglomerative clustering is used since it
was reported as computationally simplest and efficient in detect-
ing structural changes, in previous SHM works [7,34]. Under this
approach, the definition of which clusters should be merged, at
each level, is based on merging rules [45,46]. The two simplest
Fig. 12. Schematic representation of dendrogram plot.
are the ‘‘single link’’ and ‘‘complete link’’. While the first states that
the two clusters containing the closest objects should be merged,
the latter chooses the ones with the farthest objects [46]. As a con-
sequence, the first tends to find elongated clusters while the latter
is more appropriate for finding more compact clusters [46]. The
most widely used merging rules are the ‘‘average link’’ and the
‘‘ward’’, or ‘‘minimum variance’’ rule. The ‘‘average link’’ states that
the pair of clusters to be merged, at each level, is the one exhibiting
smaller average (element-wise) distance, thus leading to round-
shaped clusters [46]. The ‘‘ward’’ rule defines that, at each level,
the pair of merged clusters must generate a new partition with
the smallest variance possible [46]. This rule was chosen for appli-
cation in the present work since it does not favor any particular
cluster-shape and due to the fact that it has already been reported
as efficient in detecting structural changes [7,34].

From the defined agglomerative hierarchy, cluster partitions
containing any number of clusters (from 1 to N) can be obtained
by cutting the dendrogram plots (horizontally) between two hier-
archy levels. In this type of plot, clusters are represented by vertical
lines and hierarchy levels by horizontal lines (see Fig. 12). The
number of clusters resulting from a dendrogram cut is equal to
the number of the vertical lines intercepting the horizontal cutting
line (Fig. 12). To assess which data objects belong to each of the de-
fined clusters, one needs to observe the sub-dendrograms, located
below the cutting line. From the generic example presented in
Fig. 12, it can be readily observed that the cutting line intercepts
three vertical lines of the dendrogram, thus generating the three
clusters represented by solid lines. From the three corresponding
sub-dendrograms, it can be observed that: data objects 1 and 2 be-
long to cluster one, data objects 3 and 4 belong to cluster two and
data objects 5–9 are assigned to cluster three.

In the present section, the application of cluster analysis for
early damage detection is highlighted using data from: (i) an
undamaged simulated scenario and, (ii) 5% instantaneous stiffness
reduction in stay cable 78. The Ichino–Yaguchi dissimilarity mea-
sure, which has exhibited greater sensitivity to data changes gen-
erated by early damage (Fig. 11), was used as input to
hierarchical agglomerative clustering. The dendrogram plots are
presented for both simulated scenarios, in Fig. 13a and b, along
with six dendrogram cuts, which generate partitions comprising
two, three and five clusters. These partitions are presented in
Fig. 13c, d, Fig. 13e, f and Fig. 13g, h (for two, three and five clus-
ters, respectively), using interquartile interval time-series of two
standardized principal components (SPC6 and SCP7) and the clus-
ters are defined by the different colors.

From the interval time-series representing the undamaged-re-
lated data (Fig. 13c, e, and g), it can be observed that objects
belonging to different clusters appear to be randomly located in
time. This fact suggests that no structural changes occurred during
the period analyzed. Conversely, the two clusters belonging to the
partition presented in Fig. 13d are compact in time and divided by
the date in which damage was simulated. This result suggests that
a change in the intrinsic structure of the analyzed data was ob-
served and suggests the instant of this occurrence: the time instant
that serves as boundary between the two clusters. The same con-
clusions can also be made for the partitions comprising three and
five clusters (Fig. 13f and h, respectively), where no clusters com-
prise objects acquired in both monitoring periods (before and after
the damage occurrence).

It can be, therefore, concluded that the constitution of cluster
partitions is indicative of damage; however, its analysis may not
be conclusive when no knowledge about the structural condition
exists. Hence, a statistical sensitive feature of easier analysis and
able to highlight damage occurrences, is required. A general
comparison of cluster partitions obtained for the damaged
(Fig. 13d, f, and h) and undamaged scenarios (Fig. 13c, e, and g),



Fig. 13. Cluster analyses results: (a) dendrogram (undamaged), (b) dendrogram (damaged – 5% instantaneous stiffness reduction in stay cable 78), (c) interval-series
(undamaged – 2 cl.), (d) interval-series (damaged – 2 cl.), (e) interval-series (undamaged – 3 cl.), (f) interval-series (damaged – 3 cl.), (g) interval-series (undamaged – 5 cl.),
and (h) interval-series (damaged – 5 cl.).
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puts in evidence that the damage occurrence results in important
changes to the average distance between clusters, B(Pk). This
change is generated by the principle component’s drifts, presented
in Fig. 7 and also observed in Fig. 13 (mainly for SPC7). The sensi-
tivity of this feature can also be observed in the dendrogram plots
(Fig. 13a and b), where the average distance between clusters,



Fig. 14. Cluster validity indexes: (a) undamaged scenario and (b) simulation of 5%
instantaneous stiffness reduction in stay cable 78.
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B(Pk), is inversely related to the total length of its vertical lines.
These remarks suggest that this distance is a single-valued statisti-
cal feature capable of representing the structure of multivariate
data and of pointing out changes generated by early damage, with
small magnitude.

Hierarchical clustering algorithms are able to define a hierarchy
of N � 1 levels and N partitions. However, some of these partitions
generate high values of within-cluster distance (Eq. (8)) and, thus,
solutions which are far from being truthful [46]. To assess which
partition, among the ones obtained by cutting the hierarchy, is
the most suitable for representing the data’s structures, a quantita-
tive evaluation known as cluster validity is usually performed. It
consists in computing validity indexes for k pre-chosen dendro-
gram cuts, which result in cluster partitions with different number
of k clusters [46]. Structure and dimensionality of data can influ-
ence the outcome of this task and, thus, the choice of the most
appropriate validity index, which can identify the most truthful
partition by its maximum or minimum value. In the present work,
four validity indexes were tested (Appendix C), three which were
reported as exhibiting better performance in the reference study
[47]: the Calinski and Harabaz (CH) index, the C� index and the
Gamma index; and a more recent named Global Silhouette (SIL) in-
dex [46]. The optimal partitions are provided, for the CH, Gamma
and SIL indexes, by their maximum values. Conversely, the C� index
identifies the optimal partition with its minimum value (Appendix
C).

For the two time-history simulation scenarios used to plot
Fig. 13, the four studied validity indexes were calculated. These
are presented, in Fig. 14, considering cluster partitions with two
to eight clusters. Each of the index values, presented in this figure,
Fig. 15. Average distance between clusters, B(Pk), for simulations o
are divided by their maximum so that all plotted values do not sur-
pass 1.0, hence easing comparison between indexes.

By observing Fig. 14a and b, it can be observed that the CH (in-
dex with best performance in [47]) and the SIL indexes exhibit
great correlation and evidence a more stable behavior, regardless
of the presence of damage. These two indexes reveal two as the
optimal cluster partition, for both data sets considered. Conversely,
the C� and Gamma indexes vary significantly. While the first exhib-
its great changes but suggests the same optimal cluster partition
for both simulated scenarios, the latter changes its optimal parti-
tion from eight in an undamaged state, to two under a 5% stiffness
reduction. Hence, it can be concluded that the SIL and CH indexes
are more efficient in understanding the data’s structure, and that
the real number of clusters, present in the analyzed data set, is two.

3.4. Real time simulation

To study the effectiveness of the proposed statistical strategy
for real time SHM applications, the five stiffness reductions (0%,
1%, 2%, 5% and 10%) occurring instantaneously in stay cable 78,
on the 1st of July, were considered.

For each of these simulated scenarios, 43 analyses correspond-
ing to the 43 weeks of measured data were performed to simulate
the functioning of an on-line SHM system, which collects data
weekly from the in situ deployed hardware. At each data collection,
the time-series used as input comprise data from instant 0 (11th
January, 2011) to the last instant of collected data, resulting in an
increasing size of the analyzed data set.

The output obtained at each week consists in the average dis-
tance between clusters, B(Pk), which was observed to be a single-
valued early damage sensitive feature, in the previous subsection.
Fig. 15 presents its values for each of the five simulated scenarios,
during the period of SHM on the Guadiana Bridge (11th January
2011 to the 1st of February 2012). From this figure, the great sta-
bility of the chosen sensitive feature can be observed in the series
corresponding to the undamaged scenario values, where no
increasing trend and small variability are exhibited. For the dam-
age scenarios analyzed in real time, very significant increases of
the features’ values are observed in the series presented in
Fig. 15, even for a stiffness reduction as small as 1%, thus allowing
for clear early damage detections under the amount of noise mea-
sured in situ.
4. Conclusions

The present paper describes a novel data-driven strategy to de-
tect early damage under environmental effects, based in static
monitoring and in multivariate statistical methods. The developed
strategy consists in fusing sets of measurements developed in such
a way that it is of computational simplicity, allows a real time
implementation, and consists in the combination of: (i) PCA, (ii)
f instantaneous damage occurrences on the 1st of July 2011.
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the Broken-Stick, (iii) symbolic data, (iv) interquartile based dis-
similarity measures and (v) cluster analysis.

The proposed strategy led to detections of 1% structural stiff-
ness reductions in a stay cable. These results, obtained using a sta-
tic SHM system composed of few inexpensive sensors, clearly
evidence the great efficiency of the proposed strategy.

From the analyses performed, with respect to environmental
normalization, it was observed that combining PCA with the Bro-
ken-Stick method provides an efficient distinction of temperature
and damage-related effects. Great sensitivity to early damage
was achieved: (i) by computing the Ichino–Yaguchi dissimilarity
measure from symbolic data objects described by interquartile
intervals, and (ii) by standardizing the principal components prior
to the definition of the symbolic objects, leading to a normalization
of the components’ eigenvalues or ‘‘active energies’’. Strategies
including the Gowda–Diday and Hausdorff dissimilarity measures
and the use of non-standardized principal components lead to a
less efficient damage detection strategy.

Four cluster validity indexes were tested to automatically and
objectively obtain the data’s optimal cluster partitions. All of them re-
vealed sensitivity to early damage, however two of them, the Calinski
and Harabaz and the Global Silhouette indexes, revealed greater sta-
bility and were, therefore, considered on the proposed strategy.

The efficiency of the proposed strategy was checked, in the
present paper, by performing a real time procedure simulation.
From the results, it was concluded that the average distance be-
tween clusters is an effective early damage sensitive feature which,
in spite of being single-valued, reflects changes from all sensors in-
stalled throughout an entire structure. This simulation showed
that all early damage scenarios simulated (1%, 2%, 5% and 10%)
can be clearly and unambiguously detected and distinguished from
the undamaged scenario.

Appendix A. Interquartile based dissimilarity measures

Let us consider two symbolic objects Ti and Tj, obtained from a
data set of s = 1, . . . , N symbolic objects, which are described by

their r interquartile intervals, respectively TðrÞi;inf ; T ðrÞi;sup

� �
and

T ðrÞj;inf ; TðrÞj;sup

� �
. The index r = 1, . . . , p stands for each of the p vari-

ables used to define the dissimilarity measure.
The Gowda–Diday dissimilarity measure, dij = d(Ti, Tj), defined

between the pair of objects Ti and Tj, is given by:

dij ¼
Xp

r¼1

urðTi; TjÞ

urðTi; TjÞ ¼
TðrÞi;sup � TðrÞi;inf

��� ���� T ðrÞj;sup � TðrÞj;inf

��� ������ ���
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þ
TðrÞi;sup � TðrÞi;inf

��� ���� TðrÞj;sup � TðrÞj;inf

��� ���� 2Ir

� �
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þ
T ðrÞi;inf � TðrÞj;inf

��� ���
jYrj

kr ¼ max TðrÞi;sup; T
ðrÞ
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� �
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ðrÞ
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� ���� ���
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ðrÞ
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� �
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ðrÞ
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� ���� ���
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s
TðrÞsup

� �
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TðrÞinf
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ðA:1Þ

The Normalized Euclidean Ichino–Yaguchi distance measure
dij = d(Ti, Tj) can be calculated as follows:

dij ¼
1
p

Xp

r¼1

1
jYr j

urðTi; TjÞ
� �2

 !1=2

urðTi; TjÞ ¼ TðrÞi � T ðrÞj

��� ���� TðrÞi � TðrÞj

��� ���þ c 2 TðrÞi � T ðrÞj

��� ���� TðrÞi

��� ���� T ðrÞj

��� ���� �
ðA:2Þ
where c is a pre specified constant ranging from 0 to 0.5. The oper-
ators � and �, as well as the norm |[. . .]|, are defined by,

TðrÞi � TðrÞj ¼ min TðrÞi;inf ; T
ðrÞ
j;inf

� �
max TðrÞi;sup; T

ðrÞ
j;sup

� �h i
TðrÞi � TðrÞj ¼ max T ðrÞi;inf ; T

ðrÞ
j;inf

� �
min TðrÞi;sup; T

ðrÞ
j;sup

� �h i
jAj ¼ j½Ainf ;Asup�j ¼ Asup � Ainf

ðA:3Þ

and the quantity |Yr| is defined in (A.1).
The Normalized Euclidean Hausdorff distance dij = d(Ti, Tj) is gi-

ven by:

dij ¼
Xp

r¼1

urðTi; TjÞ
Hr

	 
2
 !1=2

H2
r ¼

1
2N

XN

i¼1

XN

j¼1

½urðTi; TjÞ�2

urðTi; TjÞ ¼ max TðrÞi;inf � TðrÞj;inf

��� ���; TðrÞi;sup � TðrÞj;sup

��� ���� �
ðA:4Þ
Appendix B. Cluster centroid

Let us consider a cluster C containing the objects ðTiÞ16i6N , each

object described by interquartile values TðrÞi;inf ; TðrÞi;sup

� �
with

r = 1, . . . , p. The centroid of cluster C is defined by:

C ¼ TðrÞi;inf ; T
ðrÞ
i;sup

h i� �
16r6p

TðrÞinf ¼
1
N

X
i

T ðrÞi;inf ; TðrÞsup ¼
1
N

X
i

TðrÞi;sup

ðB:1Þ
Appendix C. Cluster validity indexes

Let us consider a symbolic data set of N objects and K clustering
partitions, chosen for validity purposes. Considering a partition
containing t distinct clusters Pt = (C1, . . . , Ct), let
Ck ¼ TðkÞ1 ; . . . ; TðkÞMk

� �
be the kth cluster, constituted by Mk objects

and 1 6 Mk 6 N.
The Calinski and Harabaz (CH) index is given by:

CHðPtÞ ¼
BðPtÞ
WðPtÞ

� N � t
t � 1

; t ¼ 2 . . . K ðC:1Þ

where B(Pt) is the between-cluster variation, W(Pt) is the total with-
in-cluster variation of partition Pt. The partition corresponding to
the maximal CH absolute value is identified as the optimal cluster-
ing partition (i.e. the optimal number of clusters).The C� index can
be calculated as:

C�ðPtÞ ¼
1
N

Xt

k¼1

Mk
SðkÞ � SðkÞmin

SðkÞmax � SðkÞmin

; t ¼ 2 . . . K C� 2 ½0;1� ðC:2Þ

where S(k) represents the sum of distances among the k objects
within a cluster Ck, SðkÞmin is the sum of the k smallest distances among
all objects and, conversely, SðkÞmax is the sum of the k largest distances
among all objects. The optimal partition is given by the minimal
absolute value of C� index.The Gamma (C) index is obtained by:

CðPtÞ ¼
CþðPtÞ � C�ðPtÞ
CþðPtÞ þ C�ðPtÞ

; t ¼ 2; . . . ;K ðC:3Þ

where C+(Pt) represents the number of within-cluster distances
which are smaller than between-cluster distances, and C�(Pt) is the
number of within-cluster distances larger than between-cluster dis-
tances. The optimal partition is given for C maximal absolute value.

The silhouette width of the ith object in the cluster Ck is defined
in the following way:
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sðkÞi ¼
bðkÞi � aðkÞi

max aðkÞi ; bðkÞi

� � 2 ½�1;1� ðC:4Þ

The average distance aðkÞi between the ith object in the cluster Ck

and the remaining j objects assigned to the same cluster is given
by:

aðkÞi ¼
1

Mk � 1

XMk�1

j ¼ 1
i–j

dij; 1 6 i 6 Mk ðC:5Þ

The minimum average distance bðkÞi between the same object
i and all the objects clustered in one of the remaining clusters is
given by:

bðkÞi ¼ min
r ¼ 1; :::;K

r–k

1
Mr

XMr

j¼1

dij

 !
; 1 6 i 6 Mk ðC:6Þ

where r is any cluster of partition Pt with a number of elements
equal to Mr.The silhouette index of cluster Ck, sk, and the global
silhouette index of partition t, SIL(Pt), are respectively given by:

sk ¼
1

Mk

XMk

i¼1

sk
i

SILðPtÞ ¼
1
K

XK

k¼1

sk; t ¼ 2; . . . ;K

ðC:7Þ

The higher the Silhouette, the more compact and separate are
the clusters. Hence, its maximal value indicates the optimal
partition.
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