

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Artisanal lime coatings and their influence on moisture transport during drying

Vânia Brito & Teresa Diaz Gonçalves

LNEC – Materials Department – Concrete, Stone & Ceramics Division

Introduction

Lime coatings are common in historical buildings

aesthetical + sanitary purposes + protection of the substrates

Terena village, Alentejo, south Portugal

Introduction

Lime coatings are common in historical buildings

aesthetical + sanitary purposes + protection of the substrates

- interiors and exteriors
- on lime plasters or directly on stone elements
 - most typical: limewashes (aqueous suspensions of lime)
 - also: thicker coatings (lime pastes)

Monte rural, Tavira, Algarve, south Portugal

Mosteiro de Rendufe, Amares, Braga, north Portugal

Introduction

Lime coatings are common in historical buildings

aesthetical + sanitary purposes + protection of the substrates

Moisture / dampness is also frequent in those buildings

- thick solid walls + porous hydrophilic materials + direct contact with the ground + soluble salts
- coatings control moisture exchanges construction / environment

Mértola, Alentejo, south Portugal

Introduction

Lime coatings are common in historical buildings

aesthetical + sanitary purposes + protection of the substrates

Moisture / dampness is also frequent in those buildings

- thick solid walls + porous hydrophilic materials + direct contact with the ground + soluble salts
- coatings control moisture exchanges construction / environment
- when lime coatings are replaced by synthetic coatings
 => drying hindered => often, moisture problems exacerbated

Mértola, Alentejo, south Portugal

Introduction

Lime coatings are common in historical buildings

aesthetical + sanitary purposes + protection of the substrates

Moisture / dampness is also frequent in those buildings

- thick solid walls + porous hydrophilic materials + direct contact with the ground + soluble salts
- coatings control moisture exchanges construction / environment
- when lime coatings are replaced by synthetic coatings
 => drying hindered => often, moisture problems exacerbated

How (and why) do traditional lime coatings affect (or not) the drying of porous building materials?

Mértola, Alentejo, south Portugal

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3) mortar	
CA	Ançã limestone	soft and porous limestone from Portugal	
СС	"Grey" limestone low porosity limestone from Portugal		
Μ	Maastricht limestone	soft and very porous sandstone from the Netherlands	
В	Bentheimer sandstone	porous sandstone from Germany	

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3 by volume)	
CA	Ançã limestone	soft and porous limestone from Portugal	
CC	"Grey" limestone	low porosity limestone from Portugal	
М	Maastricht limestone	soft and very porous sandstone from the Netherlands	
В	Bentheimer sandstone	porous sandstone from Germany	

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3 by volume)	
CA	Ançã limestone	nçã limestone soft and porous limestone from Portugal	
СС	"Grey" limestone	low porosity limestone from Portugal	
М	Maastricht limestone	soft and very porous sandstone from the Netherlands	
В	Bentheimer sandstone	porous sandstone from Germany	

Christ Convent in Tomar, Portugal

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3 by volume)	
CA	Ançã limestone	soft and porous limestone from Portugal	
СС	"Grey" limestone low porosity limestone from Portugal		
М	Maastricht limestone	soft and very porous sandstone from the Netherlands	
В	Bentheimer sandstone	porous sandstone from Germany	

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3) mortar	
CA	Ançã limestone	soft and porous limestone from Portugal	
CC	"Grey" limestone	low porosity limestone from Portugal soft and very porous sandstone from the Netherlands	
М	Maastricht limestone		
В	Bentheimer sandstone	porous sandstone from Germany	

Basilica of Our Lady, Tongeren, Belgium http://www.belgium-mapped-out.com/belfries.html

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3 by volume)	
CA	Ançã limestone	soft and porous limestone from Portugal	
CC	"Grey" limestone	stoneIow porosity limestone from Portugalimestonesoft and very porous sandstone from the Netherlands	
М	Maastricht limestone		
В	Bentheimer sandstone porous sandstone from Germany		

New Church in Delft, The Netherlands http://commons.wikimedia.org/

Materials

Substrate: porous materials relevant for cultural heritage

Ref	Designation	Description	EM The
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3 by volume)	EM ENSAIO
CA	Ançã limestone	soft and porous limestone from Portugal	
СС	"Grey" limestone	low porosity limestone from Portugal	
Μ	Maastricht limestone	soft and very porous sandstone from the Netherlands	
В	Bentheimer sandstone	porous sandstone from Germany	

Cubic specimens with 24 mm edge

Materials

Substrate: porous materials relevant for cultural heritage Lime coating: maximum porosity; good workability

Ref	Designation	Description	E
Α	Lime mortar dry hydrated lime Lusical H100 : sand (1:3 by volume)		
CA	CA Ançã limestone soft and porous limestone from Portugal		
CC	C "Grey" limestone low porosity limestone from Portugal		
Μ	Maastricht limestone soft and very porous sandstone from the Netherlands		ad
В	Bentheimer sandstone porous sandstone from Germany		-
PC	Lime paste dry hydrated lime Lusical H100 W/L=1.4 (by weight)		1

Cubic specimens with 24 mm edge coating applied in two crossed coats (24 hour interval) by brush (on the mortar) or spatula (on the stones)

Materials

Substrate: porous materials relevant for cultural heritage Lime coating: maximum porosity; good workability

Ref	Designation	Description	Capillary porosity (%)	Modal pore radius (µm)
Α	Lime mortar	dry hydrated lime Lusical H100 : sand (1:3 by volume)	20.8	0.59
CA	Ançã limestone	soft and porous limestone from Portugal	22.9	0.35
СС	"Grey" limestone	low porosity limestone from Portugal	9.1	0.13
Μ	Maastricht limestone	soft and very porous sandstone from the Netherlands	42.7	10 –18 ⁽¹⁾
В	Bentheimer sandstone	Bentheimer sandstone porous sandstone from Germany		20 (2)
PC	Lime paste	dry hydrated lime Lusical H100 W/L=1.4 (by weight)	51.1	0.46

- (1) De Clercq, H., De Zanche, S., Biscontin, G. (2007) TEOS and time: the influence of application schedules on the effectiveness of ethyl silicate based consolidants, *Restoration of buildings and monuments an international journal* 13, 305-318.
- (2) Dautriat, J., Gland, N., Guelard, J., Dimanov, A., Raphanel, J. L. (2009) Axial and radial permeability evolutions of compressed sandstones: end effects and shear-band induced permeability anisotropy, *Pure and Applied Geophysics* 166, 1037-1061.

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

16

Method: drying kinetics (RILEM test)

Method: drying kinetics (RILEM test)

- Laterally sealed specimens (1D moisture transport)
- Partial immersion in water 3 days (capillary saturation)
- Bottom sealed
- Drying at 20°C and 50% RH
- Free water surfaces (Petri dishes) as reference
- Periodical weighing

Method: drying kinetics (RILEM test)

- Laterally sealed specimens (1D moisture transport)
- Partial immersion in water 3 days (capillary saturation)
- Bottom sealed
- Drying at 20°C and 50% RH
- Free water surfaces (Petri dishes) as reference
- Periodical weighing

Typical evaporation curve

Method: drying kinetics (RILEM test)

Stage I

- Liquid continuity across the sample
- Evaporation front at the surface
- Drying rate is constant

<u>Stage II</u>

- Moisture content decreases => lower liquid flow
- Evaporation front recedes into the material
- Drying rate decreases

Typical evaporation curve Stage I => straight line

Vapour transport

Sealant

Wet material / liquid continuity

Liquid transport

Method: drying kinetics (RILEM test)

Results

- drying rate (stage I)
- drying kinetics => drying index (NORMAL 28/88)

Typical evaporation curve Stage I => straight line

Commissione NORMAL: Misura dell'indice di asciugamento (drying index). CNR/ICR. Doc nº 29/88, Roma (1991)

Method: drying kinetics (RILEM test)

Results

- drying rate (stage I)
- drying kinetics => drying index (NORMAL 28/88)

$$DI = \frac{\int_{t_0}^{t_i} f(w_i) dt}{w_0 t_i}$$

Note: the lower DI the faster the drying

Typical evaporation curve Stage I => straight line

Method: drying kinetics (RILEM test)

Results

- drying rate (stage I)
- drying kinetics => drying index (NORMAL 28/88)

$$DI = \frac{\int_{t_0}^{t_i} f(w_i) dt}{w_0 t_i}$$

Note: the lower DI the faster the drying

Typical evaporation curve Stage I => straight line

Results and Discussion

Drying index (global drying kinetics)

Coated materials => lower DI

3rd Historic Mortars Conference

ção para a Ciência e a Tecnologia

Results and Discussion

13

 \succ Coated materials => lower DI + higher DR

3rd Historic Mortars Conference

13

25

Results and Discussion

Coated materials => lower DI + higher DR => the lime coating <u>accelerates</u> the drying \succ

Greatest differences occur for the Bentheimer sandstone (B): the DI was reduced by 25% and the DR increased by 46%

Artisanal lime coatings and their influence on moisture transport during drying LABORAT DE ENCIE

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

26

Results and Discussion

Coated materials => lower DI + higher DR => the lime coating <u>accelerates</u> the drying Why?

Artisanal lime coatings and their influence on moisture transport during drying Fundação para a Ciência e a Tecnologia

27

Results and Discussion

Coated materials => lower DI + higher DR => the lime coating <u>accelerates</u> the drying Why?

<u>Hip.1</u>: High vapour permeability of the lime coating

- could justify, at the maximum, DI equal to that of the uncoated substrate
- wouldn't affect DR as in Stage I the evaporation front is at the surface (no vapour transport across the material)

3rd Historic Mortars Conference

13

28

Results and Discussion

Coated materials => lower DI + higher DR => the lime coating <u>accelerates</u> the drying Why?

Hip.1: High vapour permeability of the lime coating

- could justify, at the maximum, DL equal to that of the uncoated substrate
- wouldn't affect DR as in Stage The evaporation front is at the surface ٠ (no vapour transport across the material)

Artisanal lime coatings and their influence on moisture transport during drying

ZNE<

ABORATÓRIO NACIONAL

29

Results and Discussion

13

Coated materials => lower DI + higher DR => the lime coating <u>accelerates</u> the drying \succ Why?

Hip.2: Larger effective surface of evaporation for the lime coating

- complex pore networks => evaporating surfaces with irregular morphology => => surface area may exceed that of the projected surface
- consistent with the fact that the DR is higher for some materials than for the water surface

Artisanal lime coatings and their influence on moisture transport during drying Idação para a Ciência e a Tecnologia

30

Results and Discussion

Coated materials => lower DI + higher DR => the lime coating accelerates the drying

DR not identical among the coated materials (nor between those and the lime paste)

... contrary to what would be expected because:

- in Stage I the evaporation front is at the surface
- these surfaces are all covered with the same coating

Artisanal lime coatings and their influence on moisture transport during drying

Fundação para a Ciência e a Tecnologia

31

Results and Discussion

Coated materials => lower DI + higher DR => the lime coating <u>accelerates</u> the drying

DR not identical among the coated materials (nor between those and the lime paste)
Why?

<u>Hip.1</u>: The suction of the substrate on the fresh coating changes its physical properties <u>Hip.2</u>: Influence of the transitional layer, where the coating interpenetrates the substrate

- the menisci recede into the material to generate the capillary pressure gradient
- the coating is thin => the transitional layer could be reached by the wet front

Conclusions

The pure lime coating not only does not hinder drying ... but can even accelerate it for a wide range of substrate materials

The acceleration in drying rate:

- > is particularly significant for stage I conditions, i.e., when the wet front is at the surface
- is not due to a high vapour permeability of the lime coating
- it is probably due to a larger effective surface of evaporation
- has a magnitude that depends on the type of substrate

Artisanal lime coatings and their influence on moisture transport during drying

Acknowledgements

This work was performed under the research project DRYMASS (ref. PTDC/ECM/100553/2008) which is supported by national funds through the Fundação para a Ciência e a Tecnologia (FCT) and the Laboratório Nacional de Engenharia Civil (LNEC)

We are thankful to Veerle Cnudde and Timo G. Nijland for providing the Bentheimer sandstone.

Thank you!

