

Guidance for repair and rehabilitation of concrete transport infrastructures (CTIS)

Prof. P.A. Muhammed Basheer Queen's University Belfast, Northern Ireland

Investing in our common future

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

- Exposure variations
- Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
 - Decision on time of intervention
 - Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

Exposure variations

- Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
- Decision on time of intervention
 - Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Exposure Classes in EN 206

- ► No risk of corrosion
- Carbonation-induced corrosion
- Chloride-induced corrosion resulting primarily from de-icing salts
- Chloride-induced corrosion resulting from seawater exposure
- Freeze-thaw attack
- Chemical attack

let

Exposure Classes in EN 206

Class	Environment	Examples
1. No risk of corrosion or attack		
X0	Concrete with no embedded metal (except where there is freeze/thaw, abrasion or chemical attack) For concrete with reinforcement or embedded metal: very dry	Concrete inside buildings with very low air humidity.
2. Corrosion induced by carbonation		
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity Concrete permanently submerged in water
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water contact Many foundations
XC3	Moderate humidity	Concrete inside buildings with moderate or high air humidity, External concrete sheltered from rain
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not within exposure class XC2

Exposure Classes in EN 206

3. Corrosion induced by chlorides other than from seawater				
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides		
XD2	Wet, rarely dry	Swimming pools, Concrete exposed to industrial water containing chlorides		
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing chlorides Pavements, Car park slabs		
4. Corrosion induced by chlorides from seawater				
XS1	Exposed to airborne salt but not in direct contact with seawater	Structures near to or on the coast		
XS2	Permanently submerged	Parts of marine structures		
XS3	Tidal, splash and spry zones	Parts of marine structures		

dunatiNet

Exposure Classes in EN 206

5. Freeze/thaw attack with or without de-icing agents			
XF1	Moderate water saturation, without de-icing agent	Vertical concrete surfaces exposed to rain and freezing	
XF2	Moderate water saturation, with de- icing agent	Vertical concrete surfaces of road structures exposed to freezing and airborne de-icing agents	
XF3	High water saturation, without de- icing agent	Horizontal concrete surfaces exposed to rain and freezing	
XF4	High water saturation, with de-icing agent or seawater	Road and bridge decks exposed to direct spray containing de-icing agents and freezing. Splash zones of marine structures exposed to freezing.	

6. Chemical attack

Where concrete is exposed to chemical attack from natural soils and ground water is given in Table 3, the exposure shall be classified as given below. The classification of seawater depends on the geographical location; therefore the classification is valid in the place of use of the concrete.

XA1	Slightly aggressive chemical environment according to Table 3	
XA2	Moderately aggressive chemical environment according to Table 3	
XA3	Highly aggressive chemical environment according to Table 3	LINEL

Review of EN206

> BS EN8500 compliment to EN206-1
> IS EN206 Irish Guidelines to EN206-1
> NP EN206-1 Portuguese Guidelines to EN206-1
> French and Spanish guidelines

dunatiNet

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

- Exposure variations
- Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
- Decision on time of intervention
 - Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Transnational Workshop

Types of Structure

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage and assessment and repair techniques

- Exposure variations
- Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
- Decision on time of intervention
 - Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Transnational Workshop

Causes of Deterioration

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

- Exposure variations
- Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance

Decision on time of intervention Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Interdependence between concrete microstructure, transport mechanisms, exposure and mechanisms of deterioration

Importance of Cover and Its Quality

Cover Concrete is the Achilles Heel of Concrete !

ATLANTIC AREA

Degradation models and impact of degradation on structural performance

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage and assessment and repair techniques

- Exposure variations
- Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance

Decision on time of intervention

Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Transnational Workshop

Decision on Time of Intervention

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

- Exposure variations
- > Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
 - Decision on time of intervention

Establishment of performance requirements Repair strategy – methods and materials Assessment of repair performance

Ensuring Durability – Current Situation

	Design	Practice	Control
Cover Thickness	Specify Minimum 🙄 Cover	Careful placement and fixing	Covermeter 🙂
Quality of Cover (= Transport Properties)	f'c Min. CC Max. w/c	Concrete production	Tests on standard cubes/ cylinders
		Execution • Placement • Compaction • Finishing • Formwork removal • Curing • Surface treatments	Core tests

Queen's University Belfast, Northern Ireland, UK

Ensuring Durability – Performance Based

	Design	Practice	Control
Cover Thickness	Specify Minimum 🙄 Cover	Careful placement and fixing	Covermeter 🙂
Quality of Cover (= Transport Properties)	Specify Concrete Class and k _{max,} D _e	Concrete production	Tests on standard cubes/ cylinders
		Execution • Placement • Compaction • Finishing • Formwork removal • Curing • Surface treatments	Core tests (Optional)•••Site Tests: permeability, sorptivity & ion migration•••

Queen's University Belfast, Northern Ireland, UK

Use of Performance Based Approach for Repair

Queen's University Belfast, Northern Ireland, UK

>

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

- Exposure variations
- > Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
- Decision on time of intervention
 - Establishment of performance requirements

Repair strategy – methods and materials Assessment of repair performance

Repair Strategies

Defects in Concrete

- 1. Protection against ingress
- 2. Moisture control
- 3. Concrete restoration
- 4. Structural strengthening
- 5. Physical resistance
- 6. Resistance to chemicals

Reinforcement corrosion

- 7. Preserving or restoring passivity
- 8. Increasing resistivity
- 9. Cathodic control
- 10. Cathodic protection
- 11. Control of anodic areas

dunatiNet

>

Aim of the Activity

To make a critical review of main aspects of CTIS repair, damage, assessment and repair techniques

- Exposure variations
- > Types of structures
- Causes of deterioration
- Material degradation models
- Impact of degradation on performance
- Decision on time of intervention
 - Establishment of performance requirements
 - Repair strategy methods and materials

Assessment of repair performance

Activities

Review of requirements of concrete durability Task Leader: QUB

- Mechanism and types of damage in reinforced concrete Task Leader: U. La Rochelle
- In situ inspection techniques specifications and comparisons

Task Leader: U. Bordeaux

Repair techniques for concrete structures Task Leader: LNEC

Time plan for deliverables

Activ	ity	Final submission
3.1	Requirement of durability	Feb 2010
3.2	Mechanisms of damage	June 2010
3.3	Assessment of condition	Feb 2011
3.4	Inspection techniques; equipments; understanding results; interpretation of data	June 2011
	dupatilNe	ЭĊ

Thank You

dunatiNet

