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Abstract 

The shoreline changes along the backbarrier of a barrier system are extremely variable and 

critically dependent upon geographic location and the inherent interaction with hydrodynamic 

processes. Main objectives of the present study are related with the definition and adequateness 

of Backbarrier Development Indexes, and its application to the recent evolution of the Ria 

Formosa backbarrier. 

Backbarrier coastline evaluation is performed based on aerial photographs analys is between 

1947 and 2001. Considering it spatial variability, two types of approaches are purposed for the 

three main dominant morphologies at the backbarrier: cross-shore and longshore evolution. The 

backbarrier development indexes application recognizes different status of evolution and 

maturation, taking into account the determined longshore evolution. 

Results obtained for the Ria Formosa backbarrier evolution illustrates two distinct periods 

representative of accretion and erosion trends : for accretion was identified the period between 

1947 and 1976, and for erosion or smaller accretional rate was identified the period between 

1976 and 2001. Application of the purposed indexes allowed obtaining the classification of a 

well maturated backbarrier between 1947 and 2001. The central part of the system accomplishes 

progradational backbarrier behaviour in contrast with a retrograding behaviour at the eastern 

extreme of the system. 

Indexes application reveals to be a good approach in the classification of backbarrier 

development, and should be discussed within the identification of the main forcing mechanisms 

acting at the system. Besides the natural forcing mechanisms (complete overwash events), 

changes at the inlets position are the main factors controlling the backbarrier development and 

maturation. 

Prediction of future changes requires a detailed understanding of the hydrodynamic controls 

responsible for alteration on restricted fetch areas, like is the Ria Formosa backbarrier. 

 

Key-words: Backbarrier, indexes, maturation, Ria Formosa, overwash, inlets.
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1. Introduction 

Low energy beaches are located in sheltered and/or fetch-limited environments. Sheltered 

environments occur in the lee of islands, reefs, or submarine ridges (Hegge et al., 1996 in 

Jackson et al., 2002a), so are protected to varying degrees from higher energy waves generated 

in larger adjacent bodies of water. Fetch-limited environments occur in lakes (Bauer and 

Greenwood, 1990 in Godfellow, 2005), bays (Ekwurzel, 1990 in Goodfellow, 2005), estuaries 

(Jackson and Nordstrom, 1992, Jackson, 1999), and lagoons (Jackson et al., 2002a), where 

limited fetch produces small waves that are, however, steep and erosive due to short periods 

(Battjes, 1974; Jackson et al., 2002b). 

The primary agents of erosion on fetch-limited environments are waves generated within the 

estuaries by local winds, although ocean swell waves that enter the estuaries through inlets, tidal 

currents, wind drift, and vessel wakes are important on some sites (Nordstrom, 1992). Locally 

generated waves have usually short periods being principally dependent on wind conditions 

(speed, direction and duration) and basin dimens ions (width, length and depth) (Nordstrom, 

1992; Jackson et al., 2002b). The dependence of wave generation on local winds means that 

fetch-limited beaches experience a highly variable wave climate, with periods of high waves 

interspersed with periods of calm (Jackson et al., 2002b), while the absence of low-steepness, 

long-period swell waves from fetch-limited environments restricts the shoreward return of 

sediment (Wright and Short, 1984). 

Tidal range affects the vertical distribution of wave energy profile, determining the width of 

the beach and the duration that wave break at any elevation (Nordstrom, 1992). Longshore 

currents are predominantly generated by breaking of local wind-waves but refracted ocean 

waves, tidal flows and wind drift are important. Tidal currents are especially important where 

beaches are located near tidal channels, causing important effects on beach change when they 

operate in conjunction with waves. At these times, resulting currents may be as great as 

observed on high-energy days on ocean beaches (Nordstrom, 1977 in Nordstrom, 1992). 

The consequent reduction in significance of wave height increases the importance of surge-

related water level fluctuations in explaining profile shape and the location of morphologic 
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features (Hegge et al., 1996 in Jackson et al., 2002a). Profile characteristics of low energy sandy 

beaches include narrow foreshores that are often steep (Jackson, 1999), planar and without a 

backshore (Nordstrom and Jackson, 1993). 

The shorelines occurring along restricted fetch environments, like the backside of barrier 

islands, are extremely diverse and variable with respect to types and erosion rates. Main controls 

and shoreline characteristics differ over short distances due to differences in fetch length and 

exposure to winds (Nordstrom, 1992). These low and narrow islands are periodically dominated 

by oceanic processes resulting in major sediment input in response to overwash events (Dillon, 

1970; Schwartz, 1975; Leatherman, 1976; Andrade, 1990; Dingler et al., 1993; Short; 1999; 

Morang et al., 2002; Masselink and Hughes, 2003), inlet dynamics, and migrating dune sands 

(Jackson et al., 2002a). Consequently, many low sediment banks and marsh platforms contain 

extensive shallow waters with ephemeral strand plain beaches and abundant fringing marsh. 

These latter processes and responses not only diminish wave energy, but actually build 

backbarrier platforms critical for barrier island migration processes in response to rising sea 

level (Nordstrom et al., 1996). 

Migration of a barrier is a prime factor to be considered when evaluating lagoon’s evolution. 

Landward migration may reduce size of the tidal prism and generate a series of changes which 

cause inlet closure and water freshening, and ultimately obliterate the lagoon which if the 

barrier is joined to the mainland shore (Cooper, 1994). Any change in the hydrodynamics of the 

inlet and its vicinity are likely to modify the sediment transport pattern; inlet migration and inlet 

sediment bypassing are processes that can account for dramatic shoreline changes along barrier 

islands (Salles, 2001). 

There are only a few studies evaluating restricted fetch environments, especially in what 

concerns to backbarrier environments. Further investigation is needed in order to evaluate the 

generic backbarrier evolution, as a complement of coastal dynamics research. Developing a 

more objective and quantitative definition of the term low energy requires a better 

understanding of the occurrence and duration of morphological features, magnitude and 

frequency of hydrodynamic controls. 
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In the present analysis it is purpose the definition and application of Backbarrier Development 

Indexes, in order to classify the evolutionary pattern of backbarrier stretches located in restricted 

fetch environments. The recent evolution of a backbarrier coastline located at the south of 

Portugal, Ria Formosa barrier system, is used to support the indexes application. Backbarrier 

coastline evaluation is accomplish by the determination of cross-shore and longshore evolution, 

based on aerial photograph analysis between 1947 and 2001. 

 

2. Methods  Description 

The following description is assumed to be a methodological proposal for backbarrier 

evolution determination. Taking into account the existence of different issues associated with 

such methodology, this section is divided in several sub-sections and respective methods of 

determination in order to clarify each type of analyse. 

 

2.1. Aerial Photograph Analysis : general definitions  

Aerial photograph analysis includes a primary step of study period definition, considering the 

expected behaviour, followed by the georectification process (image processing) , and finally the 

identification and mapping of the backbarrier coastline. The chosen period of analysis should be 

determined by the period for which quantity and quality of information (vertical aerial photos) 

are adequate. In attempt to determine the major trends, three sets of photographs , and 

consequently two period of analysis (representing each period about 25 to 30 years of 

evolution) , are considered of giving a good overview. 

During the georectification process it is used a well-distribution set of ground control points 

over the study coastal stretch, avoiding inherent errors of rectification (Coyne et al., 1999). This 

process is performed by using the ERMapper programme that allows resample the image into a 

given coordinate system. The final output is a series of photomosaics for each year, where 

backbarrier coastline is digitized using the GIS programme Mapinfo. 

For the global characterisation, during the backbarrier coastline digitalisation, two approaches 

are considered: cross-shore and longshore evolution. Both are taken to quantify the evolution of 
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the three main dominant morphologies at the backbarrier: inner beach, salt marsh, and inner 

beach next to inlet (Table 1, Figure 1). 

 

Table 1. Definition of each morphological unit considered at the backbarrier (see example 

Figure 1). 

Morphology Definition 

Inner Beach (IB) Sandy beach on the backbarrier sometimes cut by the presence of 

salt marsh areas, and episodically dominated by the washover fans 

(Andrade, 1990; Jackson et al., 2002a). Such area smoothly changes 

to the inner beach next to inlet (Nordstrom et al., 1996). 

Hydrodynamically is dominated by waves of short period, with 

restricted fetch, and by low to medium velocity tidal currents.  

Salt Marsh (SM) Backbarrier marsh sites typically exhibit a stratigraphic succession 

from intertidal muds through alternating salt marsh and brackish peat 

facies associated with minor variations in magnitude and direction of 

relative sea-level tendency (Andrade, 1990; French and Spencer, 

1993; French 1997). Corresponds to the salt marsh area on the 

coastline located at the backbarrier, being hydrodynamically 

dominated by small velocity tidal currents. 

Inner Beach next to Inlet (IBI) Sandy beach on the backbarrier, spatially located next to inlets. 

Hydrodynamically dominated by strong tidal currents and some 

oceanic waves that cross the inlet. There is no dune field between 

these beaches and the oceanic ones. 

 

For the coastline changes determination, a main reference at the bayside (reference line) is 

need to be established. For the coastal limit of the IB, the dune/inner bluff edge limit is selected 

to characterise the coastline evolution in the bayside. This limit indicates changes in dune field, 

like retreat or progradation into the lagoon, and therefore changes at the inner beach position. 

When vegetation is not present (for example in the reference line used for the IBI) the limit 
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transition of tidal level (colour contrast) is choosen, or in case of being present, the inner bluff 

edge. The SM limit is defined by the frontal colour contrast caused by different type of 

vegetation (transition to non vegetated zone) and sediment properties. 

The definition of the reference line for each morphological unit allows the individual 

quantification of IB coastline, SM coastline and IBI coastline. 

 

 

Figure 1. Schematic representation of the main morphologies present at the backbarrier. 
 
 

2.2. Cross-shore  and Longshore evolution: definition and interpretation 

Cross-shore (CS) evolution is determined by using cross-shore transects measuring the 

distance between the transect origin and the reference line limits, previously defined during 

aerial photograph analysis. Since that it is pretend to compare CS evolution of salt marsh and 

inner sandy beach, IBI coastline changes are included in the IB coastline CS evaluation.  

In general, transects are distributed in order to cover the higher extension as possible. Specific 

CS transects are also located in washover areas, allowing to identify and quantify backbarrier 
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coastline alterations (progradation/retreat) due to the complete overwash occurrence. The first 

appearance is identified, as well as its maintenance and recovery (using additional years of 

analysis), however, only the first appearance accounts to estimate the total number of 

occurrences during each study period. Backbarrier coastline interruption is used as the inner 

limit of the washover. Longshore interruptions are measured (in meters) to obtain a total value 

for the entire system (Figure 2). 

 

 

Figure 2. Example of a complete overwash occurrence. 

 

Besides the complete overwash occurrence, other alterations on the system with relevant 

influence to the backbarrier evolution should be consider, and therefore request local CS 

determination. That is the case of backside areas that had suffered dredge disposal operations, 

and where should be also located CS transects. 

Longshore (LS) evaluation takes into account the determination of IB, SM, and IBI coastline 

extends for each set (IBC, SMC, and IBIC respectively). The total backbarrier coastline extend 

(BC) represents the sum of these last three morphological coastline extends for each coastal 

stretch, in each year of analysis; longshore evolution is determined in m/yr and expressed as a 

percentage. 

 

3. Backbarrier Development Classification 

Based upon the performed LS measurements, a Backbarrier Development Classification is 

purposed in order to recognize different status of evolution/maturation. Main objective is related 
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with the definition of indexes of backbarrier development to be applied to each coastal stretch, 

for a giving period: 

?BC (%) = (BC in the last year of analysis -BC in the first year of analysis)*100/(BC in the 

first year of analysis)         (1) 

 

?L (%) = (L in the last year of analysis -L in the first year of analysis)*100/(L in the 

first year of analysis)         (2) 

 

?SMC:TIBC = [(SMC in the last year of analysis/TIBC in the last year of analysis) 

 – (SMC the first year of analysis/TIBC in the first year of analysis)]   (3) 

 

The BC corresponds the backbarrier coastline extend; ? BC represents the backbarrier 

coastline extend variation expressed in percentage; L the rectilinear coastal length of each 

island/peninsula ; ? L the coastal length variation expressed in percentage; SMC the salt marsh 

coastline extend; TIBC represents the sum of IBC and IBIC coastlines extend; and ? SMC:TIBC 

the variation between the ratio SMC coastline and TIBC coastline extends in the chosen years of 

analysis (see Figure 1). 

Different status of backbarrier development are obtained after comparing the distribution of 

the indexes: ? BC vs ?L for backbarrier evolution, and ?SMC:TIBC vs ?L for backbarrier 

maturation level. When relating the first two indexes, a positive backbarrier evolution is giving 

by positive BC variations due to accretion of L (Table 2). 

 

Table 2. Possible scenarios of backbarrier development classification. 

Possible indexes relationshiop Backbarrier Development 
Classification 

Backbarrier evolution  
Increase of BC and increase of L Progradating backbarrier 
Increase of BC and decrease of L Ramified backbarrier 
Decrease of BC and increase of L Rectilinear backbarrier 
Decrease of BC and increase of L Retrograding backbarrier 

Backbarrier maturation level  
Positive ?SMC:TIBC; SMC growth Well maturated 
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?SMC:TIBC =0 Relative stable  
Negative ?SMC:TIBC; TIBC growth Not maturated 

 

The SMC:TIBC ratio is determined for each year, in attempt to perform a temporal 

classification of the level of maturation of the backbarrier: higher levels of backbarrier 

maturation are obtain by higher values of SMC:TIBC (higher extension of SMC in relation to 

TIBC ). Therefore, a well maturated backbarrier admit a positive ? SMC:TIBC variation within 

accretion of L, between the distinct years of analysis (Table 2). 

Intermediate status of development (ramified and rectilinear backbarriers) are achieved when 

indexes exhibit contrary evolution (Table 2). 

 

4. Case study 

4.1. The Ria Formosa backbarrier system 

The Ria Formosa is a multi-inlet barrier island system located in southern Portugal (Figure 3). 

Its present configuration consists of two peninsulas and five islands that extend over 56 km. The 

cuspate shape of the Ria Formosa system produces 2 different areas in terms of exposure to 

wave action. The west flank is more energetic, being under the direct influence of the dominant 

wave conditions, while the east flank is only directly exposed to the "Levante" conditions (SE 

Mediterranean wind); the west flank presents two inlets, while the east flank has five inlets. 

Tides in the area are semi-diurnal, average ranges are 2.8 m for spring tides and 1.3 m during 

neap tides, however, maximum ranges of 3.5 m can be reached. Wave climate in the area is 

moderate to high (Ciavola et al., 1997). Incident waves are normally from the W-SW, 

representing 68% of the total (Costa, 1994), although "Levante" occurs often in the area 

producing the E-SE waves, which represent 29% of the total (Costa, 1994). Storms have been 

defined for this area as events where significant wave height is greater than 3 m (Pessanha and 

Pires, 1981). Pires (1998) established the return periods for the main incident wave directions 

and concluded that for the same return period, SW storms are more energetic than SE storms. 

The occurrence of periods of high energy wave in winter leads to severe erosion problems, with 

frequent overwash of the barrier islands (Martins et al., 1996). 
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The backbarrier cover an area of 8.4x107 m2, being characterised by: i) large salt marsh areas 

with a high density of shallow meanders, largely composed by silt and fine sand (Bettencourt, 

1984); ii) large sand flats partially flooded and reworked during spring tides (Pilkey et al., 

1989); and iii) by a complex net of natural and partially-dredge channels thought the lagoon, 

which narrow and shoal in upper regions of the system (Salles, 2001). 

 

 

Figure 3. Study area. 

 

The shoreline along the portion of the backbarrier is characterized by low, narrow sandy 

beach alternating with portions of salt marsh, and overwash platform formed by oceanic 

overwash (Andrade, 1998). The salt marshes are located in intertidal zone representing a surface 

area of 4x107 m, corresponding to half of the lagoon area, where distribution decreases with the 

increase of the slope bottom (Andrade, 1990). 

Recent evolution of Ria Formosa barrier system is strongly dominate by physical alterations 

conduced by inlets position displacement (see inlets location at Figure 3). Ancão Inlet is a small 

migrating inlet that has an average width of 300 m (Vila-Concejo et al., 1999), being located in 
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one of the most dynamic areas of the system, and presenting a constant shift in its morphology 

and position (Andrade, 1990; Bettencourt, 1994). Migration of this inlet occurs from West to 

East until a limiting location, with directly interference with the Barreta I. coastal length (Pilkey 

et al., 1989; Vila-Concejo 1999, 2000, 2004). In the eastern part of this island, the opening and 

stabilization (1927-1955) of Faro-Olhão Inlet had provided the interruption and diversion of the 

littoral drift, resulting in a significant shoreline retreat in the barrier immediately downdrift 

(western part of Culatra I.). However, even admitting the drift trapping, a persistent accretion 

was observed at the eastern part of the Culatra I. resulting in an island growth of 32 m/yr of 

between 1945 and 1958 (Garcia et al., 2002). At downdrift, the narrowing of Armona Inlet is 

directly attributed to changes in the lagoon hydrodynamic  due to the increasingly larger Faro-

Olhão Inlet cross-sectional area that captured a signif icant fraction of Armona Inlet tidal prism. 

This inlet is considered to be the only naturally stable inlet of the system (Weinholtz, 1964; 

Pilkey et al., 2001). 

In the eastern extreme of Ria Formosa system, Lacém Inlet eastward migration, as well as 

inlet narrowing, controls the dominance of processes of accretion/erosion at Cabanas I. 

(accretion at East) and Cacela P. (significant decreases of coastal length) (Dias, 1988; Pilkey et 

al., 1989; Vila-Concejo et al., 1999; Matias, 2000). 

Besides the tidal inlets stabilisation (Faro-Olhão Inlet and Tavira Inlet) and tidal inlets 

relocation (Ancão Inlet and Fuseta Inlet), another anthropogenic intervention with relevant 

influence to the backbarrier system is related with the dredge disposal operations, in the beach 

shore and/or dune field of Armona Island (Armona Inlet and Fuzeta Inlet), and Cacela  P. These 

interventions were performed in order to consolidate these islands presenting sedimentary 

deficiencies extremely exposed to storm conditions. 

 

4.2. Methods Application 

4.2.1. Aerial Photograph analysis  

The period of analysis is comprised between 1947 and 2001 including two distinct periods for 

each island/peninsula (Table 3) (Aerial photograph coverage and scale are presented on Table 



11 
 

AII-1, Appendix II). Some islands presents it analysis conditioned by their appearance and/or 

development (e.g. 1st appearance of Cabanas I. on 1969); and for some years the complete 

morphological identification is not possible . In particular, IBI coastline is only determined for 

the 4 inlets non stabilised at the system. Such restrictions turned difficult to establish similar 

periods of analysis for each island/peninsula . 

 

Table 3. Periods of analysis considered for each island/peninsula 

Island/Peninsula Periods of analysis 
Ancão P. 1947-1976 1976-2001 
Barreta I. 1947-1976 1976-2001 
Culatra I. 1947-1972 1972-2001 
Armona I. 1969-1989 1989-2001 
Tavira I. 1947-1976 1976-2001 

Cabanas I. 1989-1996 1996-2001 
Cacela P. 1976-1989 1989-2001 

 

The processes of georectification allowed resample  the image into the Portuguese Coordinate 

System UTM/MELRICA/TMPORT_SHG73. The estimated errors in the georectification 

process for each period of analysis resulted in most cases closer to 8 m, being mostly 

representative when dealing with CS changes (Figure AII.1, Appendix II). 

An example of CS transects distribution and BC coastline mapping in the final obtained 

photomosaics are giving by Figures 4 and 5. 

 

4.2.2. General evolution  

Shorelines occurring along the backside of barrier islands are extremely diverse and variable 

with respect to accretion/erosion rates. Figure 6 presents the average CS changes determined for 

the total study period (1947-2001), while Table AII-2 at Appendix II presents the CS values 

obtained in the two distinct periods of analysis chosen for each island/peninsula.  

Results suggest the existence of a common backbarrier landward displacement in all the 

islands/peninsulas with the exception of Tavira I., showing low values of backbarrier coastline 

accretion. In general, the IB coastline suffered particular CS accretion at Cacela P. and Armona 

I., while SM coastline only exhibited significant CS accretion at Barreta I and Cacela P. 
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Figure 4. Distribution of the CS transects along the Ancão P. (photomosaic from 2001). 

 
 

 

Figure 5. Backbarrier coastline mapping along the Ancão P. (photomosaic from 2001). 
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Backbarrier areas located at places where dredge dispose operations occurred between 1996 

and 2001 (Fuzeta Inlet and Cacela P.), shown particular CS increases of about 4.6 and 3.3 m/yr, 

respectively (Table AII-3, Appendix II). 

 

 

Figure 6. Cross-shore evolution of the backbarrier coastline between 1947 and 2001. The 

average rate presented is determined for the total period of analysis considered in each 

island/peninsula. Positive values represent landward displacement, and negative values 

represent shoreward displacement. 

 

Relative LS changes determined for the entire system and for each morphological unit are 

presented on Table 4. Even admitting individual accretion at some islands, total LS results 

suggests a negative trend, representing a generic retreat of the system backbarrier coastline (of 

about -5124 m). Only at Barreta and Culatra islands was observed important LS increases with 
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values close to 50% of accretion. In general, SM evolution comprises the changes of higher 

magnitude followed by IB and IBI coastlines. 

Considering the global behaviour , four islands are representative of higher magnitude 

variations: Barreta I., Cula tra I., Tavira I. and Cacela P. The eastern sector is the one 

representative of major alterations; changes on the extreme of the system, Ancão and Cacela 

peninsulas act in the same direction, retreat. 

 

Table 4. Longshore variations for the three main morphologies evaluated (m). Negative values 

represent coastline retreat, and positive values represent coastline accretion. 

Morphologies Ancão P. Barreta I. Culatra I. 
(m) 1947-1976 1976-2001 1947-1976 1976-2001 1947-1972 1972-2001 

Inner beach -744 -1876 2009 1591 4219 -3000 
Salt marsh 212 480 1608 179 1363 545 

Inner beach 
next to inlet 

-109 13 *1 *2 429 -525 

Total -641 -1383 3783 1770 6010 -2980 
 Armona I. Tavira I. Cabanas I. 
 1969-1989 1989-2001 1947-1976 1976-2001 1989-1996 1996-2001 

Inner beach 2581 -2921 -1539 206 -1211 -43 
Salt marsh 1152 -1509 -8096 -955 1261 1174 

Inner beach 
next to inlet 

-179*3 130*3 -125 -4 65 -6 

Total 3554 -4300 -9625 -753 393 1126 
 Cacela P. Total (1947-2001)  
 1976-1989 1989-2001   

Inner beach -492 -389 -833  
Salt marsh -101 -1395 -4081  

Inner beach 
next to inlet 

-7 106 -210  

Total -600 -900 -5124  
*1 Aerial photograph from 1947 does not cover the inlet area 

*2 IBI does not corresponds to the definition performed on Table 1, Section 2.1 
*3 Relative to the total IBI coastline of Armona and Fuzeta inlets 

 

Table 5 compares the major obtained CS and LS trends between 1947 and 2001. According 

with the results integration, two periods representative of erosion and accretion trends are 

defined: for erosion or smaller accretional rate was identified the period between 1976 and 

2001; and, for accretion was identified the period between 1947 and 1976 (with exception to 

Tavira I. and Cacela P.), and in some islands like Cabanas I., the period between 1989 and 2001. 
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In general, accretion (CS and LS) is more dominant at the central part of Ria Formosa system, 

while at the extremes of the system LS retreat takes special importance in the IB coastline. 

 

Table 5. Summary of the main cross-shore and longshore trends observed between 1947 and 

2001. 

Island/Peninsula Observed Trends (1947-2001) 
 IB SM 

Ancão P. CS development of the inner beach LS development of salt marsh areas 
Barreta I. CS+LS development of inner beach  CS+LS development of salt marsh areas 

(longshore and cross-shore) 
Culatra I. CS+LS development of the inner 

beach 
CS+LS development of salt marsh areas  

Armona I. CS+LS development of the inner 
beach 

CS+LS development of salt marsh areas 

Tavira I. Global erosion of the inner beach CS+LS development of salt marsh areas 
Cabanas I. CS development of the inner beach LS development of salt marsh areas 
Cacela P.  CS development of the inner beach CS+LS development of salt marsh areas 

 

Individual behaviour allows the identification of 3 groups of evolution. 

? Group A: Barreta and Armona islands with accretion at backbarrier; 

? Group B: Ancão P., Culatra I., Cabanas I. and Cacela P., with CS accretion of inner 

beach; Culatra I. presents CS and LS development of salt marsh, while the rest of them 

present CS accretion of salt marsh areas; and 

? Group C: Tavira I., with global erosion in the inner beach, but CS and LS accretion of 

salt marsh areas. 

The occurrence of complete overwashed areas in Ria Formosa from 1947 to 2001 was also 

quantified in order to measure its importance to the backbarrier coastline evolution. Figure 7 

presents the total number of complete overwashes and the percentage of backbarrier coastline 

interrupted between 1947 and 2001. Identification and distribution of these overwashes at the 

system are considered on Table AII-4, Appendix II. The sets of 1969, 1972, 1985, and 1989 

represent the additional years used just to notice the maintenance of the previous identified 

overwashes. 
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Figure 7. Occurrence of complete overwash at Ria Formosa between 1947 and 2001. The 

number of occurrences is represented by the columns and percentage of backbarrier interruption 

by the line. 

 

Results illustrate the occurrence of 68 complete overwashes between 1947 and 2001. These 

overwashes represented an interruption higher than 4003 m of the total backbarrier coastline of 

the Ria Formosa system, being 3616 m in the west flank, and 388 m in the east flank. Two main 

periods of overwash occurrence were identified: before 1947, with 25 occurrences, and between 

1985 and 1989, with 15 occurrences. Cabanas I. had the higher frequency, 26 complete 

overwashes, with major occurrences between 1985 and 1989. The percentage of interrupted 

backbarrier coastline is more significant between 1989 and 2001, even considering a lower 

number of complete overwash occurrences. 

Aerial photograph adequateness only allowed determining CS variations at washover areas 

located at Ancão P. between 1947 and 1976, at Barreta I. between 1947 and 1976, and at Cacela 

P. between 1976 and 1989. In such areas, CS results had shown a landward displacement of 

1m/yr and 2 m/yr at Ancão P. and Cacela P., while the western sector at Barreta I. backbarrier 

coastline shown a shoreward displacement of 4 m/yr. 
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Even representing a small fraction, it should be notice that some of the registered overwashes 

could be related with the human occupation, which is the particular case of the central part of 

Ancão P. and Fuseta village located at Armona I. 

 

4.2.3. Backbarrier Development: Indexes Application 

Backbarrier development indexes were applied to Ria Formosa system for the period between 

1947 and 2001 (Figure 8 and 9). On Table AII-5, Appendix II is presented the obtained values 

for each index. 

With exception of the extremes of the system (Ancão and Cacela peninsulas) and Tavira I. it 

is common to observe a positive variation of BC, even considering the dominance of L retreat in 

more than a half of the evaluated islands/peninsulas. Global distribution of ?SMC:TIBC 

distribution suggests the presence of a high level of backbarrier maturation in the most part of 

the system. A status of well maturated and progradating backbarrier (increase of BC, L and 

?SMC:TIBC) is accomplished by Culatra, Armona and Cabanas islands, while  a 

retrogradational backbarrier behaviour was only observed at the eastern extreme of the system, 

Cacela P.; higher levels of maturation are mostly significant at Ancão P. and Cabanas I. 
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Figure 8. Classification of the backbarrier evolution considering the obtained variations for the 

backbarrier coastline and coastal length, between 1947 and 2001. 
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Figure 9. Classification of the backbarrier maturation level considering the obtained variations 

for SMC:TIBC ratio and coastal length, between 1947 and 2001. 

 

In particular, at Barreta I., the assumed L retreat occurs in opposition to a significant BC 

accretion, suggesting the existence of an intermediate development stage traduced by a ramified 

backbarrier coastline that, however, does not exhibit variation at SMC:TIBC ratio. In this case, 

BC progradation is only related landward displacement of inner sandy beach (TIBC). 

Opposite situation, rectilinear backbarrier, could be only achieved when is observed accretion 

at the coastal length but with negative variations of the backbarrier coastline. This status was 

not obtained for the study system. 

 

5. Discussion 

5.1. Indexes application and accuracy 

Application of backbarrier development indexes allowed classifying the system as a well 

maturated backbarrier. In general, the central part of the system accomplishes a progradational 

backbarrier behaviour (positive variations of BC and L), in contrast with a retrograding 

behaviour at the western extreme of the system, Cacela P. (Table AII-5, Appendix II). Even 

admitting the generic presence of a quite developed backbarrier, it seems to be common the 
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occurrence of L retreat between 1947 and 2001. System evolution is thus dominated by a 

frequent salt marsh progradation into the lagoon, but with loss of the total coastal length. 

Besides the progradational and retrograding behaviours, it is also possible to observe an 

intermediate status of development at Barreta I., ramified backbarrier coastline (the backbarrier 

includes a positive variation of BC, but with retreat of L). 

Indexes application reveals to be a good approach in the classification of Ria Formosa 

backbarrier development between 1947 and 2001, that should not be dissociate from the 

inherent system’s evolution. Therefore, indexes relationships are not linear in what concerns to 

the expected behaviour , being only object of future evolutionary predictions when integrating 

all the main forcing mechanisms acting at the system. The geographic location and the 

interaction with the adjacent littoral processes are assumed to explain the rework of the 

backbarrier of each island/peninsula, and the respective obtained indexes; differences between 

the indexes are likely of being related with differences in the hydrodynamic controls. 

A conceptual scheme of backbarrier development classification is purposed in order to 

integrate and summarize the different status of evolution/maturation (Figure 10). Indexes range 

classification is also purpose based on indexes determined for Ria Formosa backbarrier system 

(Table 6). 

The benefits of the presented scheme are that it enables simple discrimination of four main 

expected classes of development/maturation of backbarrier environments for a given period of 

analysis. In what concerns to indexes application, issues of uncertainly remain and must be 

address to the indexes application: 

i) data-resolution and accuracy. This includes the aerial photographs availability and 

resolution, and factors such as inaccuracies in the georectification process, caused 

by the number/distribution of the existent ground control points; 

ii) the definition of parameters values, such as the backbarrier limits dependent on 

local conditions; 

iii)  the validity of the purposed indexes, as they are highly generalised approximations 

and representations of real situations. 
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Figure 10. Conceptual Scheme defining the different status of backbarrier development taking 

into account backbarrier coastline evolution, length variations and SM:IB ratio variations. 

 

Accuracy of the analyses such as the undertaken is required to be making suitable for 

application, being enhance through study of additional parameters of development. Additional 

factors constraining sediment supply in the complexity of the system are likely to be significant 

(e.g. hydrodynamic controls). It is almost certain that each type of restricted fetch environment 

will have different process signature and morphodynamic behaviour. 

 

Table 6. Limits and respective scenarios of backbarrier development, defined by backbarrier 

coastline evolution, length evolution and variations at SM:IB ratio.  

Backbarrier coastline  
Evolution (%) 

Length Evolution 
(%) 

? SM:IB ratio  

< -50 % (very high retreat) < -50 % (very high retreat) ? SM/IB<0 (not maturated) 
-50% to -10% (retreat) -50% to -10% (retreat) ? SM/IB=0 (relative stable) 

-10% to 10% (relative stable) -10% to 10% (relative stable) ? SM/IB>0 (well maturated) 
10% to 50% (accretion) 10% to 50% (accretion)  

> 50% (very high accretion) > 50% (very high accretion)  
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5.2. General Evolution 

The obtained rates of landward/shoreward displacement along the backbarrier are extremely 

variable and critically dependent upon geographic location and the interaction with oceanic 

processes. Results suggest the existence of a general backbarrier landward displacement (CS) in 

most of the islands/peninsulas. Accretion (CS and LS) is more dominant in the central part of 

Ria Formosa (Group A and B) system, while at the extremes of the system LS retreat takes 

special importance in the BC (Group C). Even admitting some individual BC accretion, it is 

observed a negative trend of BC and L evolution, suggesting a generic retreat of the system 

extend. 

Distinct trends are associated with the distinct periods of analysis : for erosion or smaller 

accretional rate was identified the period between 1976 and 2001; and, for accretion was 

identified the period between 1947 and 1976. To these same periods are associated the 

occurrence of different physiographic and hydrodynamic alterations at the Ria Formosa barrier 

system, mainly related with changes at the tidal inlets pattern (previously focused on Section 

4.1). Induced changes at the sediment transport pattern, in result of inlets displacement and/or 

relocation, are likely of being responsible for the observed results at the backbarrier coastline 

(especially in what concerns to IBI coastline extend); different stages/rates of inlets 

displacement (position/width) seems to determine different rates of accretion/recession, and 

consequently different levels of development/maturation at the backbarrier (indexes 

determination) (Esaguy, 1984, 1985, 1986; Andrade 1990; Vila -Concejo et al., 1999, 2002, 

2003, 2004; Salles, 2001). For instance, the relocation of Ancão Inlet at the western position in 

1997 was responsible for reduction of L and BC in Ancão P., with consequent increase of BC at 

Barreta I. between 1996 and 2001 (Table 4, Section 4.2.2) (Vila -Concejo et al., 1999, 2002, 

2003, 2004). Even admitting a ramified backbarrier coastline, Barreta I. have been subject to 

permanent L alterations, and thus consequent hydrodynamic changes, turning difficult the 

achievement of higher levels of backbarrier maturation (SM development). 

Similarly, the decreasing of Tavira I. IB and IBI coastlines between 1947 and 1976 are also 

associated with the relocation of another inlet: Fuzeta Inlet (Esaguy, 1985; Vila -Concejo et al., 
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2002, 2004). This inlet had verified significant width increments between 1962 and 1969 (of 

about 550 m/yr), causing the destruction of the western part of island (significant decrease of 

IBC observed in the period 1947-1976) (Vila-Concejo et al., 2002). Nevertheless, the induced 

alterations between 1947 and 2001 did not interfere with salt marsh and inner sandy beach 

proportion leading to a negligible SMC:TIBC variation (same level of maturation). 

Alterations at Cacela P. BC were caused, not only by the landward displacement of the 

peninsula, but also by changes at Lacém Inlet position (Dias et al., 1999; Matias, 2000; Vila -

Concejo, 1999, 2003). According with Vila -Concejo et al. (2002), the eastward migration rate 

of this inlet had an average value of 97 m/yr, showing several decreases of the inlet width 

between 1976 and 1996, and consequent accretion of Cacela P. IBC (Section 4.1). After 1996 

the relative landward displacement is only related with the dredge disposal operations took at 

the peninsula  (Table AII-3, Appendix II). However, these increments of IBC were not 

significant, since that the global BC retreat (especially of SMC) resulted in a retrograding 

behaviour of the backbarrier peninsula’s (Table AII-5, Appendix II). 

Besides the mentioned inlets relocation, the stabilisation of the Faro-Olhão Inlet had also lead 

to the most important changes to the system. The major effect was the drastic reduction of the 

downdrift sediment budget, making barriers more vulnerable to erosion and decreasing the 

sediment supply to the eastern inlets (Salles, 2001). Particular CS erosion took place at the East 

flank of Barreta I. (Table AII-2, Appendix II), while Culatra I. had shown a natural eastward 

elongation within significant increase of BC, especially between 1947 and 1972 (Table 5, 

Section 4.2.2) (Andrade, 1990; Garcia et al., 2002). In result of abundant sediment conditions , a 

landward displacement of SMC was observed at Culatra I., indicating a progradational 

behaviour and consequent increase of the maturation level (Godfrey and Godfrey, 1974 in 

Leatherman, 1979; Frey and Basan 1985; French, 1993; Pethick, 1998). 

Whether overwash plays a significant role in a backbarrier evolution depends on numerous 

factors such as elevation of island, presence of vegetation, sediment supply to the beach, and 

frequency and strength of storms (Morton and Sallenger, 2003 in Donnelly et al., 2004). The 

complete overwashes observed at Ria Formosa between 1947 and 2001 had major expression at 
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the western flank of the system, due to differences in exposure to wave action and 

morphological characteristics (Andrade, 2004). In general, washover areas are representative of 

higher vulnerability, related with a narrow barrier with gentle slopes, a fragile dune field, and/or 

next to inlets location, like is the case of Ancão P., Barreta I. and Cacela P. (Table AII-4, 

Appendix II) (Andrade et al., 1998). 

Even admitting the CS retreat observed at the Barreta I. backbarrier, it seems to exist some 

relation with overwash occurrence and progradation of backbarrier. Barreta I. landward 

displacement is only justified by the Ancão Inlet migration (Andrade, 1990; Vila-Concejo, 

1999, 2002, 2003), where overwash events plays a secondary role  (Section 4.2.2). The period 

where the higher number of overwash events was identified (1947-1976) was also coincident 

with the period of predominant landward displacement at the Ria Formosa (Section 4.2.2). 

Overwash occurrence brought landward displacement of the BC (CS positive variations), 

facilitating the achievement of higher levels of maturation. They can be considered a sink in the 

littoral system, where the resulting washover is a source to the barrier island sediment budget 

contributing to the vertical accretion of the backside (Leatherman, 1981; P. S. Roy et al., 1994). 

Such assumption has been cited before by several authors as a primary mechanism of landward 

barrier migration (Fisher et al., 1974; Leatherman, 1976; Dingler and Reiss; 1990; Eiser and 

Birkemeier, 1991 in Donnelly et al. 2004; Bray and Carter, 1992; Bartholdy et al., 2004). 

Although, it should be noticed that the formation of the flood-tidal deltas, often associated with 

breaching, can also contribute to the island’s migration (Leatherman 1979; Andrade, 2004), 

which can be the particular case of Cacela P. 

Migration of a barrier is one of the major influences in lagoon evolution, by reducing the size 

of the tidal prism and generating a series of changes in inlets pattern (Cooper, 1994). In a cyclic 

way, such alterations are likely to affect the hydrodynamics pattern of the system, and 

consequently the backbarrier evolution. 

Besides the natural forcing mechanisms identified at the system (complete overwash events), 

the displacement/relocation of natural inlets, are the main factors controlling the backbarrier 
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evolution/maturation (Figure 11); the determined influence of dredge disposal operations to this 

system is not enough representative to evaluate its importance in the backbarrier rework.  

High levels of development are thus associated with particular stable hydrodynamic 

conditions and/or increase of sediment availability at the lagoon, while low maturation levels 

are especially related with inlets relocation/displacement. 

 

 

Figure 11. Integration of the purposed backbarrier development classification and the main 

factors controlling the Ria Formosa backbarrier system. 

 

Even not being part of the main objective of the present study, additional factors like sediment 

exchange between beach, backshore and dunes are admit to be other important source of 

sediment to the lagoon, and consequent induced alterations to the backbarrier development 

(Jackson, 1999; Short, 1999). 

 

 

6. Conclusions  
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Shorelines along the backside barrier of overwash-dominated islands are extremely different 

from mainland shorelines. These low and narrow islands are periodically dominated by oceanic 

processes resulting in major sediment input in response to overwash events, inlet dynamics, and 

migrating dune sands (Short, 1999). 

There are only a few studies evaluating restricted fetch environments, especially in what 

concerns to backbarrier environments. Main objectives of the present study were related with 

the adequateness of Backbarrier Development Indexes (evolution and maturation), and its 

application to the recent evolution of a Ria Formosa backbarrier coastline , between 1947 and 

2001. Different status of evolution are obtain by relating the backbarrier coastline and the 

coastal length variations, while the level of maturation is concern with the temporal distribution 

of the salt marsh coastline vs inner sandy beach in relation to the obtained coastal length 

variation. 

Results obtained for the Ria Formosa backbarrier coastline system suggests two periods 

representative of accretion and erosion trends of backbarrier: for accretion was identified the 

period between 1947 and 1976, and for erosion or smaller accretional rate was identified the 

period between 1976 and 2001. Application of the purposed indexes allowed classifying it as a 

well maturated backbarrier between 1947 and 2001. The central part of the system accomplishes 

a progradating backbarrier (positive variations of backbarrier coastline and coastal length, and a 

high level of maturation), in contrast with a retrograding behaviour at the eastern extreme. 

Indexes application reveals to be a good approach in the classification of backbarrier 

development between 1947 and 2001. 

Besides the natural forcing mechanisms identified at the system (complete overwash events), 

changes at the inlets position are the main factors controlling the backbarrier development. 

Changes at the sediment transport pattern, in result of inlets displacement/relocation, are likely 

to being responsible for the observed results at the backbarrier coastline; different stages/rates of 

inlets displacement (position/width) seems to determine different rates of accretion/recession, 

and consequent different levels of development/maturation at the backbarrier (indexes 

determination). 
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It is suggesting the existence of a relationship between complete overwash occurrences and 

progradation of backbarrier, possible associated to local landward migration. Lagoon alterations 

in result of migration are likely to affect the hydrodynamics pattern of the system, and 

consequently affect the backbarrier evolution. 

Prediction of future changes requires a detailed understanding of the hydrodynamic controls 

responsible for alteration on restricted fetch areas, like is the Ria Formosa backbarrier. 

Accuracy of the purposed indexes classification required to be enhancing through study of 

additional parameters of development like wave climate, tidal range, sediment supply and 

sediment transport and adequateness to any individual morphodynamic behaviour. 
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APPENDIX II  

 

Table AII-1. Coverage and scale of the vertical aerial photos used for this study. 

Year Ancão 
P. 

Barreta 
I. 

Culatra 
I. 

Armona 
I. 

Tavira 
I. 

Cabanas I. Cacela P. Scale 
(approximate) 

1947 X X X Photo 
not 

available 

X  Photo not 
available 

1/ 20 000 

1969    X  1st 
appearance 

of island 

Photo not 
available 

1/ 25 000 

1972   X   in 
development 

Bad 
quality 
photo 

1/ 7 000 

1976 X X   X in 
development 

X 1/25 000 

1989    X  X X 1/ 8 000 
1996 X X X X X X X 1/ 8 000 
2001 X X X X X X X 1/ 8 000 

 

 

-3

2

7

12

17

22

Periods of analysis

1947-1972 1969-1989 1947-1976 1976-1989 1972-2001 1976-2001 1989-2001

E
rr

or
 (m

)

 

Figure AII.1. Maximum errors determined for the analysed periods and respective standard 

deviation
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Table AII-2. Cross-shore evolution of the three main morphological units analyse (m/yr). 

Negative values represent coastline retreat, and positive values represent coastline accretion. 

Morphologies Ancão P. Barreta I. Culatra I. 
(m) 1947-1976 1976-2001 1947-1976 1976-2001 1947-1972 1972-2001 

Inner beach 0.2 0.1 0.2 -1.0 0.2 0.0 
Salt marsh 0.2 0.1 1.1 0.3 0.0 0.3 

 Armona I. Tavira I.  
 1969-1989 1947-1976 1947-1976 1976-2001  

Inner beach 1.1 0.9 0.5 -0.6  
Salt marsh -0.3 1.3 0.0 0.1  

 Cabanas I. Cacela P.  
 1989-1996 1996-2001 1976-1989 1976-2001  

Inner beach 1.0 1.2 0.9 5.0  
Salt marsh 1.7 0.1 0.6 0.3  

 

Table AII-3. Cross-shore evolution at the dredge disposal areas (m/yr) between 1996 and 2001. 

Positive values represent coastline accretion. 

Island/Peninsula Cross-shore variation (m/yr) 
Armona I. (Fuseta Inlet) 3.3 

Cacela P. 4.6 
 

Table AII-4. Complete overwash occurrence at Ria Formosa barrier system between 1947 and 

2001. Denomination of each overwash is related with the island/peninsula where occurred. 

Maintenance and reappearance of overwashes between different years is also presented. 

Year Ancão P. Barreta I. Culatra I. Armona I. 
1947 A1,A2,A3,A4 B1,B2,B3,B4  Ar1,Ar2,Ar3,Ar4,Ar5,Ar6,Ar7,A

r8 
1969 A3,A4,A5,A6,A7 B1,B2,B3,B4  Ar9 
1972 A4,A5,A6,A7,A8,A9,A10 B5,B6 Cu1, Cu2  
1976 A5,A6,A7,A8 B3,B5,B6 Cu1 Ar9, Ar10,Ar11,Ar12,Ar13 
1985 A5,A6,A7,A8,A9,A10 B3,B5,B6   
1989  B3   
1996  B3,B7   
2001  B8,B9,B10,B11   

 
Year Tavira I. Cabanas I. Cacela P. 
1947   Ca1,Ca2,Ca3 
1969  Cb1 Ca1,Ca2 
1972  Cb1  
1976  Cb1,Cb2,Cb3,Cb4,Cb5  
1985  Cb6,Cb7,Cb8,Cb9,Cb10,Cb11,Cb12,Cb13  
1989  Cb7,Cb8,Cb9,Cb10,Cb11,Cb12,Cb13,Cb14,Cb15,Cb16,Cb17,

Cb18,Cb20,Cb22 
Ca1,Ca4,Ca5 

1996  Cb23  
2001    
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Table AII-5. Backbarrier development indexes determined for the Ria Formosa between 1947 

and 2001. 

Island/Peninsula ? BC (%) ? L (%) ? SMC:TIBC 

Ancão P. -18,8 -13,5 0.7 
Barreta I. 58,3 -26,3 0.0 
Culatra I. 32,1 57,9 0.2 
Armona I. 18,3 19,6 0.1 
Tavira I. -34,8 -19,1 0.0 

Cabanas I. 12,6 12,8 0.4 
Cacela P. -25,7 -18,8 -0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FIGURE CAPTIONS 

Figure 1. Schematic representation of the main morphologies present at the backbarrier. 

Figure 2. Example of a complete overwash occurrence. 

Figure 3. Study area. 

Figure 4. Distribution of the CS transects along the Ancão P. (photomosaic from 2001). 

Figure 5. Backbarrier coastline mapping along the Ancão P. (photomosaic from 2001). 

Figure 6. Cross-shore evolution of the backbarrier coastline between 1947 and 2001. The 

average rate presented is determined for the total period of analysis considered in each 

island/peninsula. Positive values represent landward displacement, and negative values 

represent shoreward displacement. 

Figure 7. Occurrence of complete overwash at Ria Formosa between 1947 and 2001. The 

number of occurrences is represented by the columns and percentage of backbarrier interruption 

by the line. 

Figure 8. Classification of the backbarrier evolution considering the obtained variations for the 

backbarrier coastline and coastal length, between 1947 and 2001. 

Figure 9. Classification of the backbarrier maturation level considering the obtained variations 

for SMC:TIBC ratio and coastal length, between 1947 and 2001. 

Figure 10. Conceptual Scheme defining the different status of backbarrier development taking 

into account backbarrier coastline evolution, length variations and SM:IB ratio variations. 

Figure 11. Integration of the purposed backbarrier development classification and the main 

factors controlling the Ria Formosa backbarrier system. 

 

 
 
 
 
 
 
 
 


