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ABSTRACT

The purpose of this paper is to present a numerical method to identify the linear elastic
properties of orthotropic materials, as a part of a hybrid numerical-experimental model. The
proposed numerical method is based on finite element analysis and evolutionary algorithms.
This method, combined with full-field displacement measurement techniques, will allow the
identification of all the in-plane elastic properties from one single test. The off-axis tensile
test was chosen, and in order to calibrate the numerical method the wood pine lodgepole was
selected. A reference displacement field generated by finite element method, using ANSYS
5.6.2 © package, takes the place of experimental data. An optimization algorithm based on
Genetic Algorithms (GAs) was developed, which combines the reference displacement field
with a search technique to find the true material properties. An initial population was
randomly generated, and successive generations were created using the genetic operators
(Selection, Crossover, Mutation, Elimination and Implicit Mutation). The set of elastic
properties corresponding to a possible solution of the problem was used in the off-axis tensile
test model and the corresponding nodal displacements were calculated using finite element
analysis. An objective function was chosen in order to minimize the mean quadratic
difference between the reference displacement field and that one obtained according to the
proposed method.

1. INTRODUCTION Usually, three experimental tests to

Four independent elastic properties are  determine the in-plane elastic properties of
needed to fully describe the in-plane orthotropic material are employed: two
mechanical behaviour of an orthotropic tensile tests in the material directions
material [Robert (1975), Tsai and Hahn (directions 1 and 2) and one in-plane shear
(1980), Isaac and Ori (1994)): E;, E,, v,, test. The tensile tests allow the identification
and G,,, where the subscripts are refered to of Young moduli (£, and E,) and the

the material axes (see fig. 1). Poisson’s ratio (v,), while the in-plane
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shear tgst allows the identification of the
shear modulus (G;,).

There are several test methods to obtain
the shear moduli of an orthotropic material.
Three of the commonly used tests are the
off-axis tensile test [Chamis and Sinclair
(1977), Pindera and Herakovich (1986),
Kawali et al. (1997), Sun and Berret (1998)],
the Josipecu test [Walrath “and Adams
(1983), Pierron (1998), Liu (2000),
Yoshihara (2001)] and the Arcan test [Hung
and Liechti (1997)]. The off-axis tensile test
was used in this study. In order to extract
the material properties from this test, it is
desired to produce a uniform state of both
stress and strain throughout the specimen
gauge-section. However this goal is very
difficult to achieve, if not impossible. In
fact, when a tensile load is applied to off-
axis specimens under rigid end constraints,
an inhomogeneous deformation field
develops in the gauge-section due to the
extension-shear coupling effect [Sun and
Berret (1998)]. Such inhomogeneity
generally leads to errors in the determination
of shear modulus.

The inhomogeneity of the displacement
field produced in off-axis tensile tests,
although not desired for the purpose of shear
modulus  determination, gives enough
information to identify all the in-plane elastic
properties. To achieve this goal a
measurement technique of the displacement
field must be employed in combination with
a suitable optimization procedure.

In recent years the devolopment of a
number of optimization methods that direct
towards the search of the global optimum,
has been attending. These methods can be
classified ' into two main categories:
deterministic and stochastic methods. The
selection of an optimization method should
be done according to the characteristics of
the specific problem and the results desired.
This could include the nature of the design
variables (discrete or continuous or a
combination of both), the nature of the
objective function (which can not be
differentiable) and the nature of the desired
result (all or several of the local minima
could be required) [Potgieter and Stander
(1998)].  Genetic algorithms (GAs) are
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stochastic methods used to solve discrete
problems. An advantage of these methods
compared with the gradient-based methods is
that they do not require continuity or
differentiability of the objective function.
GAs date back about two decades to the
research of De Jong (1975) and Holland
(1975) in the area of genetic and adaptive
systems [Potgieter and Stander (1998)].
Since then, these methods have been used in
a variety of fields such as biology, computer
science and social sciences. More recently,
GAs were introduced in engineering design
[Potgieter and Stander (1998)].

In the present work a numerical method
was developed, as a part of a hybrid
numerical-experimental method, in order to
obtain the in-plane elastic properties of
orthotropic  materials. The method
developed includes a genetic algorithm and a
finite element analysis, performed using the
commercial code ANSYS 5.6.2 ©®.  This
method was applied to the off-axis tensile
test and the wood pine Jodgepole. A
reference displacement field was also
generated using the ANSYS package, which
plays the role of experimental data.

2. OFF-AXIS TEST MODELLING

The orthotropic material considered in
this work is the wood pine Jodgepole, with
the in-plane elastic properties presented in
table 1 [FPL (1999)]. The material direction
1 is the longitudinal (L) direction along the
fibres, while the material direction 2 is the
radial (R) direction towards annual growth
rings.

Figure 1 shows the geometry and the
dimensions of the off-axis specimen,
subjected to a uniaxial tensile loading in the
X direction. The angle between the applied

Table 1. Elastic properties of wood pine lodgepole.

E, (GPa) | E, (GPa) | vy G,, (GPa)

10,120 1,032 0,316 0,496




load and the L direction was chosen to be
6 =20°.

The off-axis tensile test was simulated by
the finite element method, using the software
ANSYS, in order to obtain a reference
displacement field, corresponding to the
elastic properties of table 1. This
displacement field plays the role of
experimental data used to calibrate the
numerical method presented in this work.

Fig. 1 — Off-axis specimen’s geometry and
dimensions.

Figure 2 shows the finite element model
of the off-axis specimen. The boundary
conditions applied to the numerical model
are in agreement with the rigid and non-
rotating testing machine grips. In the right
end of the specimen it was prescribed a
nodal displacement «, of 0,5 mm.

Fig. 2 — Off-axis tensile test model.
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The above numerical simulation of the-

off-axis tensile test leads to the results shown
in figure 3. As can be seen both u, and u,

reference displacement  fields are
heterogeneous. It can also be observed the
typical “S” deformed shape of off-axis
specimen under uniaxial tensile loading.
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Fig. 3 — Reference displacement field obtained by
finite element method: (a) displacement field
u, and (b) displacement field u, .

3. GENETIC ALGORITHMS

3.1 Introduction

GAs are search algorithms based on
natural selection and natural genetic
phenomena. Successive generations evolve
more fit individuals based on Darwinian
survival of the fittest. They simulate such
natural evolution, where the environment is
substituted by the problem that must be
solved and the organisms are represented by
the possible " solutions of that problem
[Goldberg (1989), Carroll (1999)].

A GA for a particular problem must have
the following components [Michalewicz
(1996)]:

- a genetic representation for potential
solutions to the problem;

- a way to create an initial population of
potential solutions;




an evaluation function that plays the role
of the environment, rating evolution
according to their fitness;

genetic  operators  that
composition of an offspring;

alter the

parameter values to use in the genetic
algorithm (population size, probability
of applying genetic operators, etc.).

In GAs each individual in the population
is represented by a finite string of symbols,
encoding a possible solution in a given
problem space. This space, referred to as the
search space, comprises all possible
solutions of the problem at hand. Traditional
GAs deal with fixed length strings of
symbols, which are called chromosomes
(representation of solutions), and have the
same number of individuals in successive
generations. Each position in the string is
associated to a gene. A set of genes,
occupying a defined position in the string,
represents the codification of a particular
design  problem  (real or  binary

representation). As far as GAs are

concerned, a gene can be any symbol,

although, for both practical and theoretical
convenience, the natural numbers are usually
used; the binary gene {0,1} is an example.

The genetic code in an algorithm is specified
either by the length of a string and the genes
along it or by a mapping between the strings
and the possible solutions to the problem
[Field (1999)]. )

GAs start with a population of individuals
called the initial population, randomly
generated. By applying the genetic operators
(Selection, Crossover and Mutation), a
combinatory process is done. Each
individual belonging to the initial population
is decoded, and evaluated according to some
defined quality criterion, referred to as
fitness function. Ranking of such individuals
is done afterwards. Then, pairs of strings,
among these initial solutions, are randomly
Selected and each of them subjected to
Crossover and  Mutation, producing
offsprings that will be decoded and their
fitness calculated. After that, a new Ranking
of solutions is performed and the fittest
individuals  will constitute the new
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population. The process will continue until
the convergence of the algorithm is
achieved. When the stopping criterion is
verified, the global optimum is supposed to
be the solution that is decoded from the
chromosome of the fittest solution [Field
(1999), Sipper (2000)].

3.2 Problem formulation in the GA context
In the context of GAs, each solution for a

problem, is defined by a set ¢ of design

variables, a;, which identify the sequence 4

of real numbers [Galante (1996)]:

(4

(D

[4 a;

,a;eIR.

i=1
The number of solutions available for

each g; is defined, limiting the size of their

search space. Afterwards the encoding of
each g; in a binary string is established, and -

the length of the binary string, /., reserved
for the variable g;, is determined according
to the equation [Jenkins (1993)]:

1, =2" |

H

@

where /; represents the total number of

positions on the binary string corresponding
to the variable a;. For each binary

representation of a solution a;, corresponds,
after decoding, a position p;. This position
allows the calculation of the real value of

that solution belonging to the respective
domain:

a,—a,

a,=a;,+————=Xp, . 3)
I, -1

In this equation 4, and g, are,

respectively, the lower and upper limits of
the values assumed by the design variable
a; .

Encoding each q; to binary code turns the

phenotype structure into a string of bits,
called chromosomes [Galante (1996)]:

A(e)

[4 [4

Ha,:H (e:a,-—){O,l})

i=1 i=1
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An evolutionary process (¢=0,1,2,...)

should be able to modify the population of
solutions, A(t), in order to achieve better

performance in an interation with the
environment conditions, E .

GAs, as Evolutionary Theories preconize,
need to receive information, I(r), about the

adaptation of the population, 4(), to its

environment E (see fig. 4). By this way
GAs sucessively modify the population,
achieving a progressively better adaptation
to the surrounding environment. In general

terms, GAs can be formulated as.[Galante
(1996)]:

GA: A(t)xI(t) — A(t+1) (5)

The initialization process consists on the
creation of an initial population of
chromosomes randomly generated. Each
chromosome is then evaluated according to
the defined objective function, y(4),

showing its adaptability to the environment
in which it is inserted, E. Since GAs seek to
increase fitness while it operates, a fitness
function, f(4), was defined as [Jenkins

(1993)]:
f(4)=k-y(4), (6)

k being an arbitrarily large positive value
that ensures that fifness f(4) never becomes

negative.

Figure 4 resumes the GA process. After
the creation of an initial population of
potential solutions, randomly generated, the
algorithm proceeds evaluating its fitness and
creating a new population of equal size.
Individuals of the new population will be
elaborated from those of the proceeding one
after subjecting them to the set of genetic
operators. Offsprings fitness evaluation is
done and the results are compared with
reference values. The algorithm stops when
a solution value is close enough to the
reference value.
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Fig. 4 — Genetic Algorithm process scheme.

4. IDENTIFICATION OF ELASTIC
PROPERTIES USING GAs

4.1 Problem formulation

When a body is loaded, a material point
that initially occupies the space point Q,,
will displace to another space point Q,, and
the associated displacement
represented by i(Q;) (see fig. 95).
Considering the off-axis tensile test
examined in this work, the experimental
displacement field was replaced by the nodal

displacement values numerically determined
using ANSYS (see fig. 3 a and b):

i i=L.,N, (7)

vector is

=Uu.:

U 1(xi?yi)

1

where N represents the total number of
nodes on the XY plane of the off-axis
specimen (see fig. 2).

h

L _Qig

v

0

v

Fig. 5 — Reference displacement #(Q,) of a generic

material point Q,, and displacement ﬁ(Qij )

calculated for the j solution generated by the
GA.




The mechanical properties of wood pine
lodgepole (see table 1) establish the
relationship between the load applied to the
off-axis specimen and the displacement field.
These properties are the design variables in
the numerical identification — method
developed in this study. The in-plane elastic
properties are represented, in the present GA,
by the sequence:

A= a,=E,XE; xv,xG, ,a;€IR. (8)

]

—.

i=1

The domain of each variable was
specified as follows:

E, € [9020,15070]x10° (Pa), E, €IN
E,e[867,1537]x10% (Pa), E, eIN
vy, € [280,392]x107, v, € IN

Gy, €[400,1351]x10 (Pa), G}, € IN.

The lower and upper limits for each variable
were chosen according to the values of the
elastic properties of pinus species [FPL
(1999)]. Thus, each domain is representative
of the corresponding design variable for such
species. '

According to equation (2), the length of
the binary string reserved for each variable
is:

El—)lc‘l=13’ Ez—)l‘_.2=10,

Vlz_)lc3=7, Glz __)IC4=10‘

A number of individuals in each
generation are chosen. These individuals
represent possible solutions to the problem,
i.e., a set of elastic properties available for
the orthotropic material.

Possible solutions obtained by the GA are
decoded, originating a set of in-plane

properties: P/ = {E{E{v{zG{2 . Jj=1,2,
3,... For each set of properties the off-axis

tensile test model was again analysed in the
ANSYS finite element package, and their
nodal displacement field a(o/) was

calculated (see fig. 5).
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The objective function to be minimized
was the quadratic mean difference between
the reference displacement field, ii(x;,y,),

and the displacement field obtained for the j
solution generated by the GA, i/ (x;, ;)

-t -apl o

The fitness value of each solution is
evaluated and registered during the evolution
process, according to equation (6). The
process is interrupted when the stopping
criterion is verified. The global optimum
represents the best solution found in the last
generation. Figure 6 shows a schematic
drawing of the developed numerical method.

Possible solutions Optimum

P={E.E, 0, Gy} P={ELEL .G} !

1
Genetic
Algorithm

Pine Lodgepole

;

i

F.EM. analysis
'i", ANSYS‘ Displacement field

: for the j solution , u]

Reference

i displacement field, u;

Fig. 6 — Schematic drawing of the numerical method.

4.2 Genetic operators

GAs are under evolution and researchers
are trying to improve them in a way that
enables increasingly efficiency, better
adaptation to different types of optimization
problems and more easily convergent
[Kallassy and Marcelin (1997)]. Having this
in mind, some improvements have been
made in the set of classic elastic operators,
which will be exposed on the sequence.

4.2.1 Selection

After the Ranking of the solutions,
according to their objective function values,
the total number, n, of solutions from the
population are divided in three sub-groups
composed by an even number of solutions:
n, n,, and ny (see fig. 7).




nr — S

Nus

> hy —* S
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Fig. 7 —Order of the Solutions after Ranking.

According to the technique used by the
Selection operator (see fig. 7), n; solutions
from S; subgroup may couple together or
with the ones belonging to S, following a
random logic and resulting in a number of

couples equal to the number of solutions of
Sy subgroup. Bigamy can occur within this

group of solutions. §,, subgroup if then half
divided resulting two sets of nys and n,,
solutions. n, solutions are coupled with the
n,,. This set of couples are also randomly

arranged, but, unlike the previous set, run
without the occurrence of bigamy.  Sp

subgroup is not coupled.

4.2.2 Crossover

Crossover operator is responsible for the
elaboration of the genetic material of a new
generation of solutions, created from the set
of chromosomes, which belong to a list of
mating  pairs, randomly generated  as
mentioned in 4.4.1. This operator starts
generating a random number, 7, within the

range of the length of the design string (see
fig. 8). This number is used to indicate the
position of the cross-site in both mating
strings. Then, all the gene values from one
mating element are copied to the child
clement till . The remaining sub-string is

copied from the other mating element.
Offspring generation enhances the design
space exploration, in a way such that
corresponds to a continuous seeking of the
global optimum.

51

b BT Al

Rundom operator
rafl 1]

rs:—-——'
—
IA,@@%@m--~ I \
| U

4 OOE.

[N

1
(4 moopm. -k

Fig. 8 — Crossover scheme representation.

4.2.3 Mutation
Mutation operator is carried out by

randomly flipping one gene in 2
chromosome of a recently generated
solution. Mutation operates with a pre-

defined probability, p, . Figure 9 exhibits
the Mutation process.

A0
T[T eTe o]l
L

Fig. 9 — Flipping genes in a chromosome.

Thus Mutation operator allows the
reposition of some information eventually
lost in Crossover, and enables the search of
solutions, which also belong to the search
space. This operator is although of
secondary importance so it has been
attributed a small probability to occur.

4.2.4 Elimination

Once Selection, Crossover and Mutation
process has been concluded, fitness of new
solutions (offspring) is evaluated. This
appreciation enables the accomplishment of
a new Ranking of solutions, verifying the
inclusion of a greater number of positions
and a new order (see fig. 10). The ascension
of a new solution to a top position in this




Ranking, will not allow their elimination by
- “natural selection”.

Consecutively, all the solutions that
occupy the half inferior positions from the
list represented in figure 10 (b), are
eliminated. This operation simulates the
natural selection of individuals, acting as a
natura] agent for the exclusion of the less fit
individuals [Dourado (2000)].

;(”M

"

VY

Elimination

7 Hs
(Offspring)' 0

(a) (b)

Fig.10 — Solutions arrangement: (a) before Ranking
and (b) after Ranking.

4.2.5 Implicit mutation

The observation that migration streams in
biological systems constitute a catalyze
agent on genetic diversity of an amphitryon
population, provide a model to the
elaboration of a strategy of a population
genetic  diversity reinforcement.  This
undertaking reinforcement effort consisted in
the restitution of the original population size,
n, generating a set of »n —( ny +n,, ) solutions

randomly generated.

4.3 Stopping criterion

The stopping criterion was established in
terms of the relative error calculated for each
elastic property and a maximum number of
generations with constant fitness value. The
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convergence of the algorithm is reached
when the obtained values of relative error
were less then 22% (the value of the
coefficient of wvariation of each elastic
properties [FPL (1999)]) and accounted 15
generations without any fitness value
changing.

4.4 Algorithm synthesis
Figure 11 resumes all the steps previously
described.

5. RESULTS AND DISCUSSION

During the convergence of the genetic
search, the minimum value of the objective
function in each generation is registered.
When the stopping criterion is satisfied, the
global optimum is supposed to be the
decoded solution that occupies the first
position in the ranking of solutions. In this
study a total of 115 generations were
obtained, and the evolution of fitness of the
best solution in each generation can be
appreciated in figure 12. Table 2 shows the
elastic property found by the optimization
algorithm. For each elastic properties the
relative error between its true value and the
value found by the GA was less than 22 %,
that is, less than the coefficient of variation
associated to the experimental identification
of elastic’ properties of wood species [FPL
(1999)].

As can be seen in table 2, a good
approximation was reached for E,, E, and

G, However a great relative error for v,

was found. This result is probably related to
the information content in the reference
displacement field. Indeed, the contribution
of the Poisson ratio to the response of the
test specimen can be less decisive than the
contribution of other elastic properties. In
order to check this idea, the influence on the
value of the objective function of each in-
plane elastic property was study. The
objective function was calculated for four
sets of elastic properties (see table 3), each
of them differing from the optimum solution
only in one elastic property, which assumes
its upper limit value. It was concluded that
the objective function is significantly




influenced by E,, E, and G,,, and slightly
influenced by v,, (see table 3). This can

explain the smaller convergence of the
method for v,, .
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Fig. 11 — Scheme of the genetic algorithm
developed.

Table 2 —Elastic properties obtained according to the
numerical method.

Elastic Elastic )
Design | properties: | Properties Lo
variables (pine (numerical C[I;;:)]l‘
lodgepole) method)

E, [GPd] 10,120 10,455 3,31
E, [GPa] 1,032 1,030 0,19
Via 0,316 0,372 17,72
Gy, [GPa} | 0,496 0,519 4,64

53

Individuals belonging to the last
generations indicate two different groups of
in-plane elastic properties with minimum
objective functions, where, one of each
converges to the true values and the other
one has a set of properties not desired. This
observation can indicate the presence of
local minima.

According to result obtained, the solution
of the problem is not probably sufficiently
matured.

Table 3 — Variation of the objective function with
each design variable.

E, E, Gy Objective

lpa] |[6Pa] | ™ | [Gpa] | function
10,455 | 1,030 | 0,372 | 0,519 | 4,399x1078
15,070' | 1,030 | 0,372 | 0,519 | 1,288x107*
10,455 | 1,537' | 0,372 | 0,519 | 4,515x107
10,455 | 1,030 | 0,392' | 0,519 | 6,845%107°
10,455 | 1,030 | 0,372 | 1,351' | 3,093x107*

I Upper limit of the domain associated with the design
variable

6. CONCLUSIONS

In the opresent work a numerical
identification method of the in-plane elastic
properties of orthotropic materials was
developed, to be included in a hybrid
numerical-experimental technique. The
purposed method relies on the off-axis
tensile test, and includes the finite element
method and genetic algorithms. In order to
calibrate the method the wood pine
lodgepole was selected and a reference
displacement field was obtained simulating
the off-axis tensile test in the ANSYS finite
element package.
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Fig. 12 —Fitness evolution of the best solution.

A genetic algorithm was implemented in
FORTRAN 77. Each possible solution
generated by this algorithm represents
admissible in-plane elastic properties of the

wood pine lodgepole in the LR plane. For

each set of properties the nodal displacement
field was evaluated using the ANSYS
package.  This displacement field was
compared with the reference displacement
field through an objective function. The
selected objective function to be minimized
evaluates the mean quadratic difference
between the reference displacement field and
that one obtained by the optimization
method.

The convergence of the presented method
led to good approximation of E,, E, and

G,. Relatively to v,,, a great relative error

was found, although even less than the 22%
of the coefficient of variation associated to
the experimental identification of the elastic
properties of wood species.

Further developments should be done in
order to improve the method presented
above. Some aspects are:

development of other schemes of Crossover,
in order to accelerate the convergence;

implementation of a different off-axis
tensile test in order to extract more
information from the displacement field;
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- evaluation of alternative objective

functions that are more equally sensible
to all elastic properties;

analysis of the numerical method
sensibility to experimental errors.

Although the reference displacement field
was numerically obtained, in the future full-

field displacement measurement techniques
should be used.
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APPENDIX
Pseudo-Algorithm

The implementation of the current GA is given

below. The symbols are defined as follows:

Integer counters, iteri, i, j, k, 1y, 0y, iy, n;
and i;; length of the design vector string, /;
random number, rane[0,1]; objective function,
y(4); population size, n; number of elitist
solutions, »7 ; number of solutions belonging to

group Sp, ny (see fig. 7); chromosome matrix,
inf
variables vector, .s; solutions fitness vector
fit(i); number of couples, ng (see fig. 7);
par[i,j]; probability of
mutation, p,, ; maximum number of generations

pop[i,j]; required information, state

couples matrix,

with constant fitness value, n; gene identifier
within the chromosome, al; relative error
calculated to each found elastic property, rel;

maximum percentage allowed for the relative
error, per.

Step 1: Start Program.
iteri =1
Step 2: Read GA control parameters and problem

related data.
Initialise first population randomly (binary
code as a chromosome).
For (i=1 to n)
For(j=11t 1)
Set each design variable at index

[i,j] in pop[i,j] matrix.

Step 3:

End




Step 4: Start of evolution process
For (iteri=1 to +e0)
Do Step 5 to 13 with: n;=1 and
n=n
End
Step 5: Reproduction process.
For (ny=n; to n,)

Step 5.a:  Design variables decoding
from pop[i,j].

Step 5.b:  ANSYS data file generation
for each design vector in the
population.

Step S.c: ANSYS analysis.

Step 5.d:  Objective function, y(4),
evaluation for each design
vector.

Step 5.e:  Fitness evaluation for each
design vector.

End

Step 5.f: pop[i , j] ranking according

to fitness evaluation.

Step 5.g: Selection process

For (i=1 to ny)

par [i,l ] =i
Choose vector pairs randomly
from

pop[(l to n),j] except i,

with j=1 t0 /
Copy i to par[i,z]
End
For(i=ny+1 to n)
par[i,1]=i

Choose vector pairs randomly
from pop[(i to n),j] except

i,with j=1 to [
Copy i to par[i,z]
End
Step 6: Crossover process
For(i=1 to (ny+ng))
Generate a random integer
r;€ [1, /- 1]
progl = par [i, 1]
prog2 = par[i, 2]
For( j=1 to r;)

pop| progl, j] =pop[i+n, j]
End
For( j=r;+1 to 1)

pop[prog2 , j] =pop[i+n, ;]
End
Step 7: Mutation process
Change design variables randomly

56

according to p,, :
For(i=n+1 to (ny +n+ng))
Generate a random number rane[0,1 ]

If (ran< p,,) generate an integer number

. rie(l,1]
If(pop[i,r,.] =1), pop[i,r,.] =0
Else
) pop[i,r,-] =1
End

Step 8: Offspring vectors fitness evaluation
For (i=1to ng) do Step 5 considering

m=n+l, ny,=n+ng+nrg

Step 9:  pop [(nT +n+ns),j] ranking according to

fitness evaluation.
Step 10: Elimination of the half-inferior vectors

belonging to pop [(n T +n+n S),j] matrix.

Step 11: Randomly generation of ny solutions
(binary code).

Step 12: Best solution fitness registration, ﬁt( i )

Step 13: Check for convergence according to the
stopping criterion (see 4.2.6).
Evaluate maximum relative error value of
found best set of elastic properties, rel .

If(n,.=; and rel < per)

do Step 14
Else
iteri = iteri + 1
Do Step §
End

Step 14: Data decoding from pop[ l,j] - {El,

Ey,viy,Graf
Step 15:  Stop program.

GENETIC PARAMETRES

Table 4 shows the genetic parameters considered
on the occasion of the development of this GA
model.

Table 4 — Values attributed to the genetic parameters

Parameter Value
n 10
nr 2
ny 6
np 2
Pm 0,5 %
n; 10




