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ABSTRÁ CT

The puípose of this paper is to present a nítmerical method to identUi’ the linear elastic
properties aíorthotropic materiais, as ci part Qfa hybrid numerical-experimentai model. The
proposed numerical method is hased on finite eiement analysis and evoiutionary algorithms:
This method, combined with futt-field disptacement measurement techniques, wiil aliow the
identification of ali the in-piane eiastic properties from one singie test. The off-axis tensile
test was chosen, and in arder to caiibrate the numerical method the w’oodpine iodgepoie was
seiected. A reference dispiacement fieid generated by finite eiement method, ítsing ANSYS
5.6.2 package, takes the piace of experimental data. An optimization algorithm based on
Genetic Álgorithms (GÁs,,) was deveioped, which combines the reference dispiacement fieid
with a search technique to find the true material properties. Án initial population wus
randomiy generated, and successive generations were created ítsing the genetic operators
(Selection, crossover, Míttation, Elimination and Impiicit Míttation,,). The set of eiastic
properties corresponding to a possibie sohttion of the probiem was itsed in the ofJaxis tensile
test modei and the corresponding nodal dispiacements were caicuiated ítsing finite eiement
anaiysis. Án objective function was chosen in arder to minimize the mean qïtadratic
dfference hetween the reference dispiacement fieid and that one obtained according to the
proposed method.

1. INTRODUCTION
Four índependent elastic properties are

needed to fully describe the in-plane
mechanical behaviour of an orthotropic
material [Robert (1975), Tsai and Hahn
(1980), Isaac and Ori (1994)]: E1, E2, v12

and G12, where the subscripts are refered to

the material axes (see fig. 1).

Usually, three experimental tests to
determine the in-plane elastic properties of
orthotropic material are employed: two
tensile tests in the material directions
(directions 1 and 2) and one in-plane shear
test. The tensile tests allow the identification
of Young moduli (E1 and E2) and the

Poisson’s ratio (V12), while the in-plane
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shear tst allows the identification of the
shear modulus (G12).

There are several test methods to obtain
the shear moduli of an orthotropic material.
Three of the commonly used tests are the
off-axis tensile test [Chamis and $inclair
(1977), Pindera and Herakovich (1986),
Kawai et ai. (1997), Sun and Benet (199$)],
the losipecu test [Walrath and Adams
(1983), Pierron (1998), Liu (2000),
Yoshihara (2001)] and the Arcan test [Hung
and Liechti (1997)]. The off-axis tensile test
was used in this study. In order to extract
the material properties from this test, it is
desired to produce a uniform state of both
stress and strain throughout the specimen
gauge-section. However this goal is very
dífficult to achieve, if not impossible. In
fact, when a tensile load is applied to off
axis specimens under rigid end constraints,
an inhomogeneous deformation field
develops in the .gauge-section due to the
extension-shear coupling effect [Sun and
Berret (1998)]. Such inhomogeneity
generally leads to errors in the determination
of shear modulus.

lhe inhomogeneity of the displacement
field produced in off-axis tensile tests,
although not desired for the purpose of shear
modulus determination, gives enough
information to identify ali the in-plane elastic
properties. lo achieve thís goal a
measurement technique of the displacement
field must be employed in combination with
a suitabie optimization procedure.

In recent years the devolopment of a
number of optimization methods that direct
towards the search of the global optimum,
has been attending. These methods can be
classified into two miin categories:
deterministic and stochastic methods. lhe
selection of an optimization method should
be done according to the characteristics of
the specific problem and the results desired.
This could include the nature of the design
variabies (discrete or continuoüs or a
combination of both), the nature of the
objective function (which can not be
differentiable) and the nature of the desired
result (ali or several of the local minima
could be required) [Potgieter and Stander
(1998)]. Genetic algorithms (GAs) are

stochastic methods used to solve discrete
problems. An advantage of these methods
compared with the gradient-based methods is
that they do not require continuity or
differentiabulity of the objective function.
GAs date back about two decades to the
research of De Jong (1975) and Hoiiand
(1975) in the area of genetic and adaptive
systems [Potgieter and Stander (1998)].
Since then, these methods have been used in
a variety of fieids such as bioiogy, computer
science and social sciences. More recently,
GAs were introduced in engineering design
[Potgieter and Stander (1998)].

In the present work a numerical method
was deveioped, as a part of a hybrid
numerícal-experimental method, in order to
obtain the in-plane elastic properties of
orthotropic materiais, lhe method
developed includes a genetic algorithm and a
finite element analysis, performed using the

commercial code AN$YS 5.6.2 ®. This
method was applied to the off-axis tensile
test and the wood pine iodgepoie. A
reference displacement field was also
generated usíng the ANSY$ package, which
plays the role of experimental data.

2. OFF-AXIS TEST MODELLING
lhe orthotropic material considered in

this work is the wood pine lodgepoie, with
the in-plane elastic properties presented in
tabie 1 [FPL (1999)]. lhe material direction
1 is the longitudinal (L) direction along the
fibres, while the material direction 2 is the
radial (R) direction towards annual growth
rings.

Figure 1 shows the geometry and the
dimensions of the off-axis specimen,
subjected to a uniaxial tensile loading in the
Xdirection. The angle between the appiied

Table 1. Elastic properties of wood pine lodgepole.

E1 (GPa) E2 (GFa) v12 G12 (GPa)

10,120 1,032 0,316 0,496
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load and the L direction was chosen to be
O = 200.

The off-axis tensile test was simulated by
the finite element method, using the software
ANSY$, in order to obtain a reference
displacement field, corresponding to the
elastic properties of table 1. This
displacement field plays the role of
experimental data used to calibrate the
numencal method presented in thís work.

Figure 2 shows the finite element model
of the off-axis specimen. The boundary
conditions applied to the numerical model
are in agreement with the rigid and non
rotating testing machine grips. In the right
end of the specimen it was prescribd a
nodal displacement u of 0,5 mm.

Fig. 3 — Reference displacement field obtained by
finite element method: (a) displacement field

and (b) displacement field u,.

3. GENETIC ALGORITHMS

3.1 Introduction
GAs are search algorithms based on

natural selection and natural genetic
phenomena. Successive generations evolve
more fit individuais based on Darwínian
survival of the fittest. They simulate such
natural evolution, where the environment is
substituted by the problem that must be
solved and the organisms are represented by
the possible solutions of that problem
[Goldberg (1989), Carroil (1999)].

A GA for a particular problem must have
the following components [Michalewicz
(1996)]:

- a genetic representation for potential
solutions to the problem;

- a way to create an initial population of
potential solutions;

The above numerical simulation of the
off-axis tensile test leads to the results shown
in figure 3. As can be seen both u9, and u,

reference displacement fields are
heterogeneous. It can also be observed the
typical “S” deformed shape of off-axis
specimen under uniaxial tensile loading.
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Fig. 1 — Off-axis specimen’ s geometry and
dimensions.
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Fig. 2 — Off-axis tensile test model.
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- an evaluation function that piays the role
of the environment, rating evolution
according to theirfitness;

- genetic operators that alter
composition of an offspring;

- parameter values to use in the genetic
algorithm (population size, probabilíty
of applying genetic operators, etc.).

In GAs each individual in the population
is represented by a finite string of symbois,
encoding a possible solution in a given
problem space. This space, referred to as the
search space, comprises ali possible
solutions of the probiem at hand. Traditional
GAs deal with fixed length strings of
symbols, whlch are called chromosomes
(representation of solutions), and have the
sarne number of individuais in successive
generations. Each position in the string is
associated to a gene. A set of genes,
occupying a defined position in the string,
represents the codification of a particular
design problem (real or binary
representation). As far as GAs are
concemed, a gene can be any symboi,
although, for both practical and theoreticai
convenience, the natural nurnbers are usually
used; the binary gene {o,i} is an example.
The genetic code in an algorithrn is specified
either by the length of a string and the genes
along it or by a rnapping between the strings
and the possible solutions to the probiem
[Fieid (1999)].

GAs start with a population of individuais
calied the initial popuiation, randomiy
generated. By applyíng the genetic operators
($eiection, Crossover and Mutation), a
combinatoiy process is done. Each
individual belonging to the initiai popuiation
is decoded, and evaluated according to some
defined quality criterion, referred to as
fltness function. Ranking of such individuais
is done afterwards. Then, pairs of strings,
among these initial solutions, are randomly
Seiected and each of them subjected to
Crossover and Mutation, producing
offsprings that will be decoded and their
fltness calculated. After that, a new Ranking
of solutions is performed and the fittest
individuais will constitute the new

population. The process wiil continue untii
the convergence of the algorithm is
achieved. When the stopping criterion is

the verified, the giobai optimum is supposed to
be the solution that is decoded from the
chromosome of the fittest solution [ficld
(1999), Sipper (2000)].

3.2 Problem formulation in the GA context
In the context of GAs, each soiution for a

problem, is defined by a set c of design
variabies, a, which identify the sequence A

of real numbers [Gaiante (1996)]:

A=a1xa,x xa=fJa1 ,a1EIR. (1)

The number of solutions avaiiable for
each a is defined, iimiting the size of their
search space. Afterwards the encoding of
each a1 in a binary string is estabiished, and
the iength of the binary string, lei, reserved
for the variable a, is determined according
to the equation [Jenkins (1993)]:

(2)

where i, represents the total number of
positions on the binary string corresponding
to the variabie a•. For each binary
representation of a solution a1, corresponds,
after decoding, a position p.. This position
ailows the calculation of the reai value of
that solution beionging to the respective
domam:

(3)

In this equation a1 and are,

respectiveiy, the iower and upper iimits of
the values assumed by the design variabie
a.

Encoding each a1 to binary code tums the
phenotype strncture into a string of bits,
cailed chromosomes [Galante (1996)]:

A(t)= fJa1=fJ (e:a—_—_>{O,1}) (4)
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An evolutionary process (t = O, 1, 2,...)

should be able to modify the population of
solutions, AQ), in order to achieve better

performance in an interation with the
environment conditions, E.

GAs, as Evolutionary Theories preconize,
need to receive information, 1(t), about the

adaptation of the population, Ã(t), to its

environment E (see fig. 4). By this way
GAs sucessively modify the population,
achieving a progressively better adaptation
to the surrounding environment. In general
terms, GAs can be formulated as [Galante
(1996)]:

GA: A(t)xI(t) — A(t+l) (5)

The initialization process consists on the
creation of an initial population of
chromosomes randomly generated. Each
chromosome is then evaluated according to
the defined objective function, y(A),

showing its adaptability to the environment
in which it is inserted, E. Since GAs seek to
increase fitness while it operates, a fitness
function, f(A), was defined as [Jenkins

(1993)]:

f(A)=k—y(A), (6)

k being an arbitrarily large positive value
that ensures that fltness f(Ã) never becomes

negative.

Figure 4 resumes the GA process. After
the creation of an initial population of
potential solutions, randomly generated, the
algorithm proceeds evaluating its fitness and
creating a new population of equal size.
Individuals of the new population will be
elaborated from those of the proceeding one
after subjecting them to the set of genetic
operators. Offsprings fitness evaluation is
done and the results are compared with
reference values. The algorithm stops when
a solution value is dose enough to the
reference value.

4. IDENTIFICATION OF ELASTIC
PROPERTIES USING GAs

4.1 Problem formulation
When a body is loaded, a material point

that initially occupies the space point Q.,
will dispiace to another space point Q, and

the associated displacement vector is
represented by i(Q1) (see fig. 5).
Considering the off-axis tensile test
examined in this work, the experimental
displacement field was replaced by the nodal
displacement values numerically determined
using ANSYS (see fig. 3 a and b):

ü1 =i(x,y) i=l,...,N , (7)

total number of
of the off-axis

Fig. 5 — Reference displacement ii(Q1) of a generic

material point Q, and displacement i(Q/)
calculated for thej solution generated by the
GA.

Gil
————J

1(t)

fig. 4 — Genetic Algorithm process scheme.

where N represents the
nodes on the XY plane
specimen (see fig. 2).
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The mechanical properties of wood pine

lodgepolc (see table 1) estahlish the

relationship between the ioad applied to the

off-axis specimen and the dísplacement field.

These properties are the design variabies in

the numerical identification method

developed in this study. The in-plane elastic

properties are represented, in the present (iA,

by the sequence:

A=fla1EixE2xvi,xGi2 ,a1eIR.(8)

lhe domam of each variabie
specified as foliows:

E1 E 19020,15070]xlO6tFa), E1 EIN

E,e[867,1537]x106tPa E, eIN

[go,92]xiO, v12 e IN

G12 e [400,1351]x106 (Fa), G1, e IN.

lhe iower and upper limits for each variabie

were chosen according to the values of the

elastic properties of pinus species [FPL

(1999)]. lhus, each domam is representative
of the corresponding design variable for such
species.

According to equation (2), the length of
the binary string reserved for each variable
is:

E1 c1 13, E2 c2 10,

v12—÷l3=7, G12—>t4=10.

A number of individuais in each
generation are chosen. These individuais
represent possible solutions to the problem,
i.e., a set of eiastic properties available for
the orthotropic material.

Possible solutions obtained by the GA are
decoded, originating a set of in-piane

properties: F’ = {E’,E,V’,,Gf’2}, j=1, 2,

3,... For each set of properties the off-axis

tensile test model was again anaiysed in the
ANSYS finite element package, and their
nodal dispiacement field i(Q/) was

caiculated (see fig. 5).

lhe objective function to he minimized
was the quadratic mean difference hetween
the reference displacernent field, i7 (xi, y),

and the displacement field obtained for thej

solution generated by the GA, ü/ (xi, y1):

( Ã ) = {‘ 11 - ll } (9)

lhe fitness value of each solution is
evaiuated and registered during the evolution
process, according to equation (6). lhe

was
process is interrupted when the stopping
criterion is verified. lhe global optimum
represents the best solution ftrnnd in the last
generation. Figure 6 shows a schematic
drawing ofthe developed numerical method.

Po ss ib le so tu tio ns Qptiinum
Á

.E.M. onutvsi Genetic

.in ANSYS J Displcicementfield

Reference
tfid

Fig. 6 — Schematic drawing of the numerical rnethod.

4.2 Genetic operators

(iAs are under evolution and researchers
are trying to improve them in a way that
enables increasingly efficiency, better
adaptation to dífferent types of optimization
problems and more easily convergent
[Kallassy and Marcelin (1997)]. Having this
in mmd, some improvements have been
made in the set of classic elastic operators,
which will be exposed on the sequence.

4.2.1 Selection
Afier the Ranking of the solutions,

according to their objective function values,
the total number, n, of solutions from the
population are divided in three sub-groups
composed by an even number of solutions:
n7., n and n (see fig. 7).

Pine Lodgepote

P = ( E,, E, ‘O,,, G,)
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Crossover operator is responsible for the

elaboration of the genetic material of a new

generation of solutions, created from the set

of chromosomes, which belong to a list of

mating pairs, randomly generated as

mentioned in 4.4.1. This operator starts

generating a random number, r,, within the

range of the iength of the design string (see

fig. 8). This number is used to indicate the

positíon of the cross-site in both mating

strings. Then, ali the gene values from one

mating element are copied to the child

element till r,. The remaining sub-string is

copied from the other mating eiement.

Offspring generation enhances the design

space exploratíon, in a way such that

corresponds to a continuous seeking of the

global optirnum.

fig. 9— flipping genes ín a chromosome.

Thus Mutation operator allows the

reposition of some information eventually

lost in Crossover, and enables the search of

solutions, which also belong to the search

space. This operator is although of

secondary importance so it has been

attributed a small probability to occur.

4.2.4 Elimination
Once Selection, Crossover and Mutation

process has been concluded, fitness of new

solutions (offspring) is evaluated. This

appreciation enables the accomplishment of

a new Ranking of solutions, verifying the

inclusion of a greater number of positions

and a new order (see fig. 10). The ascension

of a new solution to a top position in this

/

ai

1=1
flr -— Sr

flig

ai ‘II

j ,1

Jo;nop’ru;oi

.1’ Lt’Jci
Ã1 J}CTlí][i]

( •4’ []tki[1t.i

fig. 7 —Order ofthe Solutions after Ranking.

According to the technique used by the

Selection operator (see fig. 7), nT solutions

from S. subgroup may couple together or

with the ones belonging to SM, following a

random iogic and resulting in a number of

couples equal to the number of solutíons of

s subgroup. Bigarny can occur within this

group ofsoiutions. Sf subgroup ifthen half

divided resulting two sets of n and n

solutions. n solutions are coupled with the

n. This set of coupies are also randomly

arranged, but, unlike the previous set, mn

without the occurrence of bigamy. SB

subgroup is not coupled.

4.2.2 Crossover

\<3flT

E ise

/_ \

Ç)

fig. $ — Crossover scherne representation.

4.2.3 Mutation
Mutation operator is carried out by

randomly flípping one gene in a

chrornosome of a recently generated

solution. Mutation operates with a pre

defined probability, prn• Figure 9 exhibits

the Mutation process.

_____
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Ranking, will not allow their elimination by
“natural selection”.

Consecutiveiy, ali the solutions that
occupy the half inferior positions from the
list represented in figure 10 (b), are
eliminated. This operation simulates the
natural selection of individuais, acting as a
natural agent for the exciusion of the iess fit
individuais [Dourado (2000)]

ool iij

filo

lo

011 011

n

01! iij

i!.LL__
Fovo

[ioi

‘\ 1°’ 011

1l

11111O!

fooi lo]

[E
1001 001

Fig.1O — Solutions anangement: (a) before Ranking
and (b) after Ranking.

4.2.5 Implicit mutation
lhe observation that migration streams in

biological systems constitute a catalyze
agent on genetic diversity of an amphitryon
population, provide a model to the
elaboration of a strategy of a population
genetic diversity reinforcement. This
undertaking reinforcement effort consisted in
the ‘restitution of the original population size,
n, generating a setof a —( nT +nAf) solutions
randomly generated.

4.3 Stoppíng criterion

The stopping criterion was established in
terms ofthe relative error calculated for each
elastic property and a maximum number of
generations with constantfltness value. The

convergence of the algorithm is reached
when the obtained values of relative error
were less then 22% (the value of the
coefficient of variation of each elastic
properties [FPL (1999)]) and accounted 15
generations without any fitness value
changing.

4.4 Algorithm synthesis
Figure 11 resumes ali the steps previously

described.

5. RESULTS AND DISCUSSION
During the convergence of the genetic

search, the minimum value of the objective
function in each generation is registered.
When the stopping criterion is satisfied, the
global optimum is supposed to be the
decoded solution that occupies the first
position in the ranking of solutions. In this
study a total of 115 generations were
obtained, and the evolution offitness of the
best solution in each generation can be
appreciated in figure 12. Table 2 shows the
elastic property found by the optimization
algorithm. For each elastic properties the
relative error between its tme value and the
value found by the GA was less than 22 %,
that is, less than the coefficient of variation
associated to the experimental ídentification
of elastic properties of wood species [FPL
(1999)].

As can be seen in table 2, a good
approximation was reached for E1, E2 and
G12. However a great relative error for v1.
was found. This result is probably related to
the information content in the reference
displacement field. Indeed, the contribution
of the Foisson ratio to the response of the
test specimen can be less decisive than the
contribution of other elastic properties. In
order to check this idea, the influence on the
value of the objective function of each in
plane elastic property was study. The
objective function was calculated for four
sets of elastic properties (see table 3), each
of them differing from the optimum solution
only in one elastic property, which assumes
its upper limit value. It was concluded that
the objective function is significantiy

[flr
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1
(offopring)
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1110 001
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[7T
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!
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influenced by E,, E2 and G12, and slightly

influenced by v,2 (see table 3). This can

expiam the smaller convergence of the
method for v,.

(Solution GeneratorD
f Mechanical

( ANSYS
Fiiness

evaluation

1

cD
E Crossove’1 .._ -

Mechanical

__________

properties
(7ation}

1 Q ANSYS

evaltiation

itutionof Rankii;g of

L solutions]
solutwns

No Stoppin\

Yes

Data
iransformation

4ai

Fig. 11 — Scheme of the genetic algorithm
developed.

Elastic Elastic

Design properties: properties Relative

variables (pine (numerical error

lodgepole) method)
[%]

E, {GPa] 10,120 10,455 3,31

E, [GPa] 1,032 1,030 0,19

v,, 0,316 0,372 17,72

G,2 {GPa] 0,496 0,5 19 4,64

Individuais belonging to the last
generations indicate two different groups of
in-plane elastic properties with minimum
objective functions, where, one of each
converges to the tme values and the other
one has a set of properties not desíred. This
observation can indicate the presence of
local minima.

According to result obtained, the solution
of the probiem is not probably sufficiently
matured.

Table 3 — Variation ofthe objective function with
each design variable.

E1 E2
V

G,2 Objective

{GPa] {GFal 12

[GPaI function

10,455 1,030 0,372 0,519 4,399x106

15,070’ 1,030 0,372 0,519 1,288x104

10,455 1,537’ 0,372 0,519 4,515x105

10,455 1,030 0,3921 0,519 6,845x106

10,455 1,030 0,372 1,351’ 3,093x10

6. CONCLUSIONS
In the present work a numerical
identification method of the in-plane elastic
properties of orthotropic materiais was
developed, to be included in a hybrid
numericai-experimentai technique. The
purposed method relies on the off-axis
tensile test, and includes the finite element
method and genetic algorithms. In order to
calibrate the method the wood pine
lodgepole was seiected and a reference
dispiacement field was obtained simulating
the off-axis tensile test in the ANSYS finite
element package.

‘Upper limit of the domam associated with the design
variab le

Table 2 —Elastic properties
numerical

obtained according to the
method.
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Fig. 12 —Fitness evolution of the best solution.

A genetic algorithm was impiemented in
fORTRAN 77. Each possibie solution
generated by this algorithm represents
admissible in-plane eiastic properties of the

wood pine lodgepole in the LR plane. For
each set of properties the nodal displacement
field was evaluated using the ANSYS
package. This displacement field was
compared with the reference displacement
field through an objective function. The
seiected objective function to be minimized

evaluates the mean quadratic difference
between the reference displacement field and
that one obtained by the optimization
method.

The convergence of thc presented method

led to good approximation of E1, E2 and

G12. Relatively to v12, a great relative error

was found, although even less than the 22%
of the coefficient of variation associated to
the experimental identification of the elastic

properties ofwood species.

Further developments shouid be done in
order to improve the method presented
above. Some aspects are:

- development of offier schemes of Crossover,

in order to accelerate the convergence;

- implementation of a different off-axis
tensile test in order to extract more
information from the displacement field;

- evaluation of altemative objective
functions that are more equally sensible
to ali elastic properties;

- analysis of the numericai method
sensibility to experimental enors.

Although the reference dispiacement field
was numerically obtained, in the future full
field displacement measurement techniques
should be used.
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APPENDIX

Pseudo-Algorithm

The impiementation of the cunent GA is given
below. The symbois are defined as follows:

Integer counters, iteri, i, j, k, n1, n1,, 11 r ‘

and i1; length of the design vector string, 1;

random number, rane [o,i]; objective function,

y(A); popuiation size, n; number of elitist

solutions, nT; number of soiutions beionging to

group S3, n9 (see fig. 7); chromosome matrix,

pop [, j ] ; required information, inf; state

variables vector, s; solutions fltness vector

fit( i); number of coupies, n (see fig. 7);

couples matrix, par [j, J]; probabiiity of

mutation, p ,; maximum number of generations

with constant fitness value, ii; gene identifier

within the chromosome, ai; reiative enor

caiculated to each found eiastic property, rei;

maximum percentage allowed for the reiative

error, per.

Step 1: Start Program.
iteri =

Step 2: Read GA controi parameters and probiem
reiated data.

Step 3: Initialise first population randomiy (binary
code as a chromosome).

For(i=l to ii)

For(j=1 to i)

Set each design variabie at index
in pop[i,j] matrix.

in search,
ieaming”,
Company,

End
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Step 4: Start of evolution process
For(iteri=l to +oo)

End

Do Step 5 to 13 with: n11=1 and

nt = n

Step 5: Reproduction process.
for(n,=n,1 to n1)

Step 5.a: Design variables decoding
from pop[,].

Step 5.b: AN$YS data file generation
for each design vector in the
population.

Step 5.c: ANSYS analysis.
Step 5.d: Objective function, y(A),

evaluation for each design
vector.

Step 5.e: Fitness evaluation for each
design vector.

End
Step 5.f: pop ranking according

tofitness evaluation.
Step 5.g: Selection process

For(i=l to

End

par[i,1]= i

Choose vector pairs randomly
from

pop[(1 to n),j] except

with j=1 to 1

Copy i to par[i,2]

For(i=nT+l to n)

par [i,1]= i

t,

Choose vector pairs randomly

from pop [(i to 11), j 1 except

i,withj=1 to 1

Copy i to par{i,2]

End
Step 6: Crossover process

For(i=l to

Generate a random integer
r.e[l, 1— i]

progl =par[i, ii
prog2 = par[i, 2]

For(j=l to r.)

pop[progl,j] =pop{i+n,j]

End
For(j=r1+1 to 1)

pop{prog2,j] =pop[i+n,j]

End
Step 7: Mutatíon process

Change design variables randomly

according to p,:

for(i=n+l to (nT+n+n$))

Generate a random number ranE [o,i]

If (ran p,) generate an integer number

r1e[1, i]

If(pop[i,r1] =1), pop[i,r1] =0

Else

pop[i,r] =1

End
Step 8: Offspring vectorsfltness evaluation

for (i=1 to ns) do Step 5 considering

n,=n+l, flt=fl+flS+flT

Step 9: pop[(nT +n+ns),j] ranking according to

fltness evaluation.
Step 10: Elimination of the half-inferior vectors

belongingto popkn+n+n),j] matrix.

Step 11: Randomly generation of n r solutions

(binary code).
Step 12: Best solutionfltness registration, fit (i).
Step 13: Check for convergence according to the

stopping criterion (see 4.2.6).
Evaluate maximum relative error value of
found best set ofelastic properties, rei.

If(n1=n and rei < per)

Else

End

do Step 14

iteri = iteri + 1
Do Step 5

Step 14: Data decoding frompop[ i,]

E2,v12, G12}

Step 15: Stop program.

GENETIC PARAMETRES

—

Table 4 shows the genetic parameters considered
on the occasion of the development of this GA
model.

Table 4 — Values attributed to the genetic parameters

Parameter Value

n 10

T 2

flp.f 6

‘3 2

Pm 0,5%

ni lo
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