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ABSTRACT 

This paper presents a method to measure the displacements fields on the surface of a planar 
object with sub-pixel resolution, by combining image correlation and a differential technique. 
First, a coarse approximation of the pixel level displacement is obtained by cross correlation 
(CC). Two consecutive images, taken before and after the application of a given deformation, 
are recursively split in sub-images, and the CC coefficient is used as the similarity measure. 
Secondly, a fine approximation is performed in order to assess the sub-pixel displacements by 
means of an optical flow method based on a differential technique. This differentiation is 
achieved in a window of pixels that will typically define the displacement spatial resolution of 
the method. In order to validate the effectiveness and robustness of the proposed method, 
numerical tests, consisting of a rigid-body translation test and a rotation test, were carried 
out on computer generated images.   

 
1 - INTRODUCTION 

The measurement of the displacement 
field from a sequence of images of an 
object when this is moved or deformed by 
an external action, is a relevant information 
in many fields of digital image processing, 
such as motion estimation (Aggarwal and 
Nandhakumar 1988), image measurement 
(West and Clarke 1990) or image 
registration (Tian and Huhns 1986). In the 
last decades, many techniques used in these 
fields have assumed greater importance in 
the framework of experimental solid 
mechanics (Sutton et al. 2009). The major 
advantages of using optical methods, over 
more conventional point-wise measuring 
techniques, such as strain gauges, are the 
assessment of full-field data and their non-
evasive nature. Besides, among other 

proposed full-field optical methods for 
displacement or strain measurement, such 
as grid methods (Xavier et al. 2007), 
interferometric moiré or speckle methods 
(Cloud 1995), image correlation requires 
relatively simple photo-mechanical set-up 
and preparation of the surface of specimens. 
In this technique, the displacement field is 
measured by following the evolution of a 
textured pattern (usually a random speckle 
pattern) and is insensitive to vibration 
(Yaofeng et al. 2005), enabling the accurate 
extraction of surface displacement. 

In digital image correlation (DIC) 
algorithms, pixel level displacements 
between pairs of images are obtained 
searching the minimum or maximum 
likelihood from the similarity or 
dissimilarity of images regions. Either, the 
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sum of absolute differences (SAD), the sum 
of squared differences (SSD) or the cross 
correlation (CC) are usually used to 
evaluate the matching between regions (Hill 
et al. 2006; Chu et al. 1985). Greater 
resolution can be achieved when sub-pixel 
information is calculated increasing the 
accuracy of the displacement field 
characterisation. There are a wide variety of 
algorithms performing this calculation 
(Aggarwal and Nandhakumar 1988), 
although they can be classified into four 
categories (Tian and Huhns 1986): image 
interpolation, similarity interpolation, 
gradient-based and phase-correlation 
method. DIC was first proposed by Sutton 
and co-workers (Chu et al. 1985). They used 
coarse-fine search to find the accurate 
displacements at pixel level, and the sub-
pixel accuracy was achieved by combining 
the intensity pattern of an image with 
bilinear, polynomial or bi-cubic spline. 

In this paper, a coarse-fine approach is 
proposed where a coarse pixel level 
displacement approximation is obtained by 
cross correlation. At this stage, two 
consecutive images are recursively split in 
sub-images, and the CC coefficient is used 
as the similarity measure. In the second 
stage, a finer approximation is performed to 
obtain sub-pixel displacement calculated 
using an optical flow method (Horn and 
Schunk 1981; Lucas and Kanade 1981; Nagel 
1983; Uras et al. 1988; Anandan 1987; Singh 
1990; Heeger 1987; Waxman and Wohn 1985; 
Fleet and Jepson 1990) based on a differential 
technique.  

The proposed method is explained in full 
detail in section 2. The effectiveness of the 
method is validated using numerical tests 
(rigid-body translation and rotation test) 
and the results are presented in section 3. 
Some conclusions and final remarks are 
addressed in section 4. 

 

2 - PROPOSED METHOD 

The proposed method follows a 2 steps 
coarse-fine approach: pixel level estimation 
(coarse) and sub-pixel level estimation 
(fine) of displacement fields. In the first 
step, the normalized cross-correlation is 
recursively applied over the sub-images 

obtained over the original images pair, 
using a quad-tree splitting process. On the 
second step an optical flow method based 
on a differential technique is used. One of 
the limitations of optical flow is related 
with image intensity which must be nearly 
linear across a given period of time (Barron 
et al. 1994). The direct application of optical 
flow to calculate the displacements field on 
the surface of a specimen that undergoes a 
large deformation in a short period of time 
would introduce considerable errors in the 
resulting displacement fields. 

Therefore, in the proposed method a first 
step is introduced to calculate the pixel 
level displacement of each sub-image. This 
procedure reduces to a minimum the pixel 
level displacement of each pixel inside a 
sub-image (after being shifted) fulfilling 
this way the optical flow constraint. This 
enables optical flow technique to perform 
accurate measurement of sub-pixel 
displacement. 

 
2.1 - Pixel level estimation 

The pixel level displacement estimation 
is performed over a pair of images obtained 
before (reference) and after surface 
deformation (deformed). Using a quad-tree 
process each image is divided into a set of 
sub-images and a normalized cross 
correlation is applied to obtain the 
displacement of each sub-image centre 
point. 

 
2.1.1 Cross correlation 

To perform this task each sub-image in 
the reference image is used to map another 
sub-image on the deformed image. The 
matching of a sub-image is found by 
maximizing the normalized cross 
correlation coefficient between intensity 
patterns of two sub-images. 

 (1) 

Eq. (1) is a measure of the similarity 
between the image  and the feature . 
Among others disadvantages in using  
for template matching, it can be noticed that 
the range of  is dependent on the size 
of the feature and is not invariant to 
changes in image amplitude, such as those 
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caused by changing lighting conditions 
across the image sequence. 

The correlation coefficient overcomes 
these difficulties by normalizing the image 
and feature vectors to unit length, yielding a 
cosine-like correlation coefficient 

 (2) 

where  is the mean of the feature and  is 
the mean of  in the region under the 
feature.  is referred as the normalized 
cross-correlation (Lewis 1995; Haralick and 
Shapiro 1992). 
 
2.1.2 Quad-tree image splitting 

The image splitting is similar to a quad-
tree division process and is used to enable 
coarse pixel level displacements estimation 
between reference and deformed image, 
following a global to local approach. First a 
global displacement between full sized 
images is calculated using the similarity 
measurement. Next, both images (reference 
and deformed) are submitted to the splitting 
process using a quad-tree technique which 
consists in dividing each one recursively 
into four (4) sub-images (Fig. 1) and 
repeating for each pair the normalized 
cross-correlation calculation.  

 

 
Fig. 1 – Quad-tree image splitting process. 

 

At any level  of the splitting process 
(Fig. 2), the obtained displacement is 
assumed constant along the entire sub-
image; notice that sub-image at level  
represents the entire image. After the 
splitting process terminates, a coarse map 
of pixel level displacements between 

reference and deformed image is obtained 
from their sub-images. 

 

 
Fig. 2 – Splitting process at level n resulting in 4 

sub-images. 
 

The maximum number of splitting levels 
can be defined by: 

 (3) 

where, 

 (4) 

From Eq. (3) the smallest sub-image size 
is given by: 

 (5) 

The splitting process of a certain sub-
image at level  stops when at least one of 
three conditions is satisfied: 1) the 
maximum number of splitting levels 
defined in Eq. (3) is reached; 2) the 
displacement calculated from level  to 
level  doesn’t follow a smooth 
behaviour; 3) or is the same. The 
expressions defining these conditions are 
expressed as follows: 

1)  (6) 

2)  (7) 

3)  (8) 
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Where m is the current splitting level of the 
method and dn and dn+1 represents 
respectively the displacement of image at 
level n and n+1. 
 
2.2 - Sub-pixel level estimation 

After finding a coarse pixel level 
displacement between the two images, sub-
pixel estimation is applied to obtain greater 
resolution. Each reference sub-image 
(resulting from the quad-tree 
decomposition) is shifted by their amount 
of pixel level displacement over the 
correspondent deformed sub-image. Next, 
the displacement estimation of each pixel 
belonging to the sub-image is computed 
using an optical flow technique (OF). The 
goal of OF is to compute an approximation 
to the 2D motion field – a projection of the 
3D velocities of surface points onto the 
imaging surface – from spatiotemporal 
patterns of image intensity. The main stages 
of processing consist of: 1) prefiltering or 
smoothing with low-pass / band-pass filters 
(to extract signal structure of interest and 
enhance SNR (signal-to-noise ratio); 2) the 
extraction of basic measurements such as 
spatiotemporal derivatives (to measure 
normal components of velocity); 3) the 
integration of the previously extracted 
measurements to produce a smooth 2D flow 
field. The method proposed in this paper 
implements a first-order technique, more 
specifically, the local differential technique 
from Lucas & Kanade (Lucas and Kanade 
1981), which has been proved to be an 
efficient and reliable technique (Barron et al. 
1994; Pan et al. 2006). 

 
2.2.1 Spatio-temporal derivatives 

Differential techniques compute velocity 
from spatiotemporal derivatives of image 
intensity (I) or filtered versions of the 
image using low-pass or band-pass filters. 
In the present case a Gaussian filter is used. 
The main requirement for differential 
techniques is that  must be 
differentiable. The technique proposed by 
Lucas & Kanade implements weighted 
least-squares (LS) fit of local first-order 
constraints to a constant model for  in each 

small spatial neighbourhood Ω of position 
, by minimizing: 

 (9) 

 is a window function that gives more 
influence to constraints at the centre of the 
neighbourhood than at the periphery. 
Depending on the speckle size, this function 
could be adjusted in order to control the 
spatial resolution (i.e., the windows size). 

 is the spatial intensity gradient, 
 represents the two compo-

nents image velocity and  is the 
partial time derivative of image intensity at 
position x in instant t. The displacement 
field resulting from differential technique 
has sub-pixel resolution usually with values 
less than 1 pixel. 

The global displacement of each pixel is 
then obtained by adding its coarse pixel 
level displacement (cross-correlation) with 
the respective finer sub-pixel level 
displacement (differential technique). 

 

3 - PERFORMANCE ASSESSMENT OF THE 
PROPOSED METHOD: RESULTS AND 
DISCUSSION  

 
3.1 - Validation procedure 

In order to assess the performance, i.e. 
the sensitivity and the accuracy of optical 
methods both numerical (Lecompte et al. 
2006; Bing et al. 2006) and experimental 
(Wang and Cuitino 2002; Haddadi and 
Belhabib 2008) tests can be carried out. In 
these tests, the underlying idea is to 
compare a known displacement field, which 
is applied to move or deform a given 
textured pattern reference, with the one 
calculated by the proposed method (Fig. 3). 

For the purpose of validation, it can be 
advantageous to perform numerical 
analyses by processing computer-generated 
speckle-pattern images (Orteu et al. 2006; 
Bornert 2007). In this approach the errors 
associated to the proposed method can be 
uncoupled from the experimental ones (e.g., 
light intensity variation or error in imposing  
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Fig. 3 – Flowchart representation of the computer-
generated speckle-pattern images. 

 

a reference displacement). Moreover, more 
complex (e.g., heterogeneous) deformation 
fields can be analysed, since experimentally 
only simple controlled tests such as static 
(motionless) or rigid-body tests (i.e., in-
plane or out-of-plane translations and 
rotations) can be carried out. Numerically, 
several tests can be performed on images 
generated before and after the application of 
a prescribed displacement or strain field. 
Such tests can consist of: rigid-body 
translation and rotation tests, homogeneous 
tests (i.e., associated to uniform strain 
fields) and heterogeneous tests (i.e., 
associated to non-uniform strain fields) 
(Lecompte et al. 2006; Bing et al. 2006; 
Orteu et al. 2006; Bornert 2007). 
 
3.2 - Generation of synthetic speckle-

pattern images 

When using numerical tests, one major 
difficulty is the generation and deformation 
of a realistic synthetic speckle-pattern 
image, i.e., with a histogram and spectral 
properties similar to the ones of real speckle 
images which can be obtained, for instance, 
by spray painting or toner powder 
deposition (Orteu et al. 2006). Several 
authors (Bing et al. 2006; Wattrisse et al. 
2001) have proposed analytical expressions 

for generating this type of synthetic images. 
The advantage is that an analytical 
displacement field can be directly used in 
order to deform a given reference speckle-
pattern image. Thus, images corresponding 

to undeformed ( ) and deformed ( ) 
configurations can be generated according 
to the following expressions: 

 
(10) 

 

where  are the pixel coordinates 
(corresponding to the sampled unit cells of 
the CCD sensor),  represent a random 
light intensity value defining the contrast of 
the speckle image,  controls the granular 
size of the speckle pattern,  is the total 
number of spots defining the textured 
pattern and  and  are the applied 
displacement fields through  and  
directions, respectively. 

In practice, images with a depth of 8 bit 
were created as follows. Firstly, a pure 
black image was generated by initialising a 

 matrix filled with zeros, where  and 
 represent, respectively, the length and the 

width of the image – this could correspond 
experimentally to cover the region of 
interest of a sample with black paint, by 
means of a spray or airbrush for instance. 
Secondly, the reference speckle-pattern 
image (undeformed configuration) was 
generated by iteratively superimposing 
images with a single randomly distributed 
gray scale spot characterised by a radius  
and having a Gaussian distribution function 
– in practice, the resulting image could 
correspond to randomly spread white paint 
over the black background surface of the 
sample. The total number of spots  as 
well as their central location  within 
the spatial domain of the image was 
randomly chosen. A sequence of images 
corresponding to a given undeformed 
configuration can then be generated, with 
regard to the reference speckle-pattern 
image, by applying an inverse displacement 
field  (Eq. 11). Finally, a 5x5 
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Gaussian filter was applied to the generated 
images in order to obtain a smooth textured 
speckle-pattern. An example of a speckle-
pattern image, together with its histogram, 
typically generated from this approach, is 
shown in Figure 4.  

 

. 

 
Fig. 4 – Typical generated speckle-pattern image 

and its histogram. 
 
3.3 - Reconstruction of the kinematic 

fields 

The displacement field determined from 
the proposed method can be smoothed 
afterwards by fitting a 2D polynomial 
function using the least-squares 
approximation scheme (Xavier et al. 2007): 

 (11) 

where w represents a weighting mask 
defining the validity of each pixel, 

 are the unknown polynomial 
coefficients, and d is the degree of the 
polynomial. In proposed method, a 3th-
degree polynomial was found suitable for 
the least-squares regression scheme. From 
these smooth displacement fields, the strain 
fields can be then straightforward 
reconstructed by analytical or numerical 
differentiation (Xavier et al. 2007). This 
approach is suitable since only 
homogeneous strain fields are to be 
processed in the numerical tests analysed in 
the following. 
 
3.4 - Numerical tests 

In this work, two types of numerical 
tests were carried out in order to validate 
the proposed method: (1) an in-plane rigid-
body translation test, and (2) a rotation test. 

3.4.1 Rigid-body translation test 

The rigid-body translation test consisted 
in analysing a set of images generated by 
applying incrementally sub-pixel displace-
ments to a reference image along one 
direction. Therefore, transformed images 
were generated with regard to the reference 
one by cumulatively imposing a translation 
of 0.1 pixels in the  (column) direction up 
to 1 pixel. These images were then 
processed by the proposed method 
(differentiation window of 9x9 pixels) in 
order to retrieve the applied uniform 
displacement fields. 

For each calculation (between the 
reference and each transformed image), 
determined from the proposed method, the 
mean displacement value, over the entire 
field, was evaluated and compared to the 
applied translation field. This study is 
summarised in Figure 5a). From these 
results, a qualitative agreement was found 
among the calculated and the reference 
applied displacements. From the residual 
differences between the calculated and the 
applied displacements, both mean 
(systematic error in Figure 5b)) and 
standard deviation (random error in Figure 
5c)) values were determined as a function 
of the applied sub-pixel displacements.  

The mean bias error was obtained with 
the proposed method reaching its maximum 
value at an applied displacement of 0.5 
pixels of about 3.2x10-2. The standard 
deviation values are plotted in Figure 5c); 
as can be seen it remains acceptably low. 

 
3.4.2 Rotation test 

The rotation test consisted in analysing a 
set of images generated by applying a 
rotation to a reference image centred in the 
middle of image. Therefore, transformed 
images were generated with regard to the 
reference one by cumulatively imposing an 
increasingly higher rotation up to 0.6 
degrees. These images were then processed 
by the proposed method (differentiation 
window of 9x9 pixels) in order to retrieve 
the displacement fields from the applied 
rotations. 

For each calculation (between  the  refe- 
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(a) 

 

(b) 

 

(c) 

Fig. 5 – Calculated displacement (a), mean bias 
error (b) and standard deviation as a function of the 

applied displacement (c); unit: pixel. 
 

rence and each transformed image), 
determined from the proposed method, the 
displacement values, over the entire field, 
was evaluated and compared to the applied 
rotation field. This study is summarised in 
Figure 6a).  

The calculated and the reference applied 
rotations show similar results. From the 
residual differences between the calculated 
and the applied rotations, systematic error 

 
(a) 

 
(b) 

Fig. 6 – Calculated rotation (a), mean bias error (b) 
unit: degrees. 

 

values in Figure 6b) were determined as a 
function of the applied rotation degrees. 
The mean bias error was obtained with the 
proposed method reaching its maximum 
value at an applied rotation of 0.6 degrees 
of about -8x10-2. 

 

4 - CONCLUSIONS 

In this work a method combining cross-
correlation and a differential technique was 
implemented, allowing the measurement of 
displacement fields with sub-pixel 
accuracy. It is based on a coarse-fine 
approach. Coarse approximation is 
performed using a pixel level estimation 
(cross-correlation) and the fine estimation 
by a sub-pixel level estimation approach 
(differential technique). The computation of 
the spatial and temporal derivatives is done 
in a subset that controls the spatial 
resolution of the technique. Besides, 
because no local interpolation of the 
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discrete gray level distribution is required, 
the proposed method can be eventually 
applied, in the future, to a wider range of 
textured patterns. 

In order to validate the proposed method 
two types of numerical tests were carried 
out: (1) in-plane rigid-body translation test, 
and (2) rotation test. The method showed 
accurate and reliable results using 
numerical tests. 

These features along with the quality of 
results obtained from numerical tests will 
enable, in future work, the use of proposed 
method to characterize a wide range of 
materials and their behaviour (e.g. 
structural behaviour of fractured objects 
under load, ex: cortical bone tissue). 
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