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ABSTRACT 

Fatigue crack growth in structural components is often subjected to variable amplitude 
loading. This paper describes the more relevant crack growth transients generally observed 
under simple variable amplitude loading sequences and several crack propagation models 
that consider the load interaction effect in fatigue crack growth. Many models have been 
proposed to predict fatigue crack propagation that consider the loading history. The basic 
models are analysed and discussed. The Wheeler model is one of the simplest and most widely 
employed models to quantify the fatigue crack growth retardation after a single overload. 
This model is able to describe the basic phenomena of retardation due to overloads. However, 
due to its simple formulation is unable of accounting the other observed post-overload crack 
growth transients, the effect of underloads, and more difficulties arise when both overloads 
and underloads are involved. Therefore, more recent models that propose a number of 
modifications to the Wheeler model, to improve its accuracy in predicting fatigue crack 
growth under variable amplitude loading, are also analysed.  

 
1 - INTRODUCTION 

For many fatigue critical parts of 
structures, fatigue crack propagation under 
service conditions generally involves 
random or variable amplitude, rather than 
constant amplitude loading conditions. 

Crack growth in structures is mainly 
influenced by the load amplitude and stress 
ratio. Under variable amplitude loading the 
load history or load sequence effect is also a 
major factor in determining fatigue life. 
Due to the random nature of variable 
loading, significant accelerations and/or 
retardations in crack growth rate can occur. 
Thus, an accurate prediction of fatigue life 
requires an adequate evaluation of these 
load interaction effects.  

Overloads are known to retard crack 
growth, while underloads generally 
accelerate crack growth relatively to the 
baseline crack growth rate. These 
interactions, which are highly dependent 
upon the loading sequence, make the 
prediction of fatigue life under variable 
amplitude loading more complex than 
under constant amplitude loading.  

Many models have been developed to 
predict the fatigue life of components under 
variable amplitude loading, which try to 
correctly evaluate the load interaction 
effects in crack growth propagation 
(Wheeler 1972; Willemborg 1971; Elber 
1972; Newman 1981). 
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Generally, these retardation models may 
be classified into two main categories: 
crack tip plasticity models and crack 
closure models. The crack tip plasticity 
models are based on the assumption that 
crack growth retardation occurs due to the 
large plastic zone developed during 
overloading. The residual compressive 
stresses formed in this zone will reduce the 
magnitude of the tensile stresses during the 
next fatigue cycle and tend to delay crack 
growth. A number of retardation models 
belong to this category. The second main 
category of retardation models, the crack 
closure models, are based on Elber’s 
experimental observation (Elber 1972) that, 
as a result of the tensile plastic deformation 
left in the wake of a fatigue crack, a partial 
closure of the crack faces occurs during part 
of a fatigue load cycle. Since crack 
propagation can only occur during the time 
for which the crack is fully open, the 
formation of crack closure reduces the 
range of the applied stress that is effective 
for crack growth. 

More recently, models that include 
combinations of the Wheeler model with 
the strip yield model initially proposed by 
Newman (Huang et al 2005a), models 
based on the strain energy density factor 
(Huang et al 2005b), two parameter driving 
force models (Mikheevskiy and Glinka 
2009) and others, have been proposed. 
However, due to the number and 
complexity of the mechanisms involved in 
this problem, no universal model exists yet.  

The purpose of this paper is to describe 
and analyse the more relevant crack growth 
transients generally observed under simple 
variable amplitude loading sequences and 
several crack propagation models that 
consider the load interaction and stress ratio 
effects in fatigue crack growth under 
variable amplitude loading, using an 
equivalent stress intensity factor range. 

 

2- LOAD INTERACTIONS EFFECTS 
UNDER SIMPLE VARIABLE AM-
PLITUDE LOAD SEQUENCES 

Skorupa (1998) introduces the load 
interaction terminology to characterize the 
crack growth under variable amplitude 

loading, meaning that crack growth 
increment for a given cycle of a variable 
amplitude loading may be different than 
expected if constant amplitude is applied. A 
measure of average load interaction effects 
in crack growth can be estimated using the 
value of n/N which represents the ratio 
between the actual crack propagation life 
and that predicted from Miner’s law. 
Instantaneous load introduction effects can 
be simulated by the ratio between the 
constant amplitude fatigue crack growth 
rate, (da/dN)CA, and the measured under 
variable amplitude loading tests, (da/dN)VA. 
Thus a n/N value or (da/dN)CA/(da/dN)VA 
ratio larger than unity implies beneficial 
load interaction effects, occurring 
retardation of crack growth, whereas values 
less than unity indicate crack growth 
acceleration. 

As already mentioned, an accurate 
prediction of fatigue life requires an 
adequate evaluation of the basic load 
interaction effects. To attain this objective 
several type of simple variable amplitude 
load sequences must be analysed and 
modelled.  

Fig. 1 depicts the typical transient crack 
growth behaviour following a single tensile 
overload.  

 

 
 
Fig. 1 – Typical crack growth transients following a 

peak overload (Yuen and Taheri 2006). 
 

For a number of materials, namely for 
steels and aluminium alloys, it has been 
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observed that an initial acceleration of the 
fatigue crack growth rate occurs 
immediately after an overload. The 
subsequent crack growth rate decreases 
until its minimum value is reached at some 
point ahead of the overload application, 
followed by a gradual approach to the 
constant amplitude crack growth level (Shin 
and Hsu 1993; Borrego et al 2001 and 
2003). The observed behaviour is usually 
referred to as delayed retardation of crack 
growth. 

The typical effect of periodically applied 
overloads for several numbers of baseline 
cycles between overloads can be seen in 
Fig. 2, for 2024-T3 aluminium alloy 
(Ohrloff et al 1988). 

 

 

Fig. 2 - Crack growth rate behaviour under periodic 
overloads (Ohrloff et al 1988). 

 

This figure shows that for remotely 
spaced overloads (n≥100 cycles) crack 
retardation and a corresponding decrease of 
da/dN relatively to constant amplitude 
loading are generally observed. In contrast, 
the results for more frequently applied 
overloads (n=10 cycles) present crack 
acceleration relatively to constant amplitude 
loading. 

A reapplication of an overload after a 
period of baseline cycling reactivates 
mechanisms which lead to fatigue crack 
growth retardation. The most effective 
retardation is obtained when the period 
between overloads is sufficiently long to 
cause the crack growth rate to reach a 

minimum value. Additionally, at low K 
baseline levels, when the overload 
reapplication occurs still during the 
acceleration stage associated with the prior 
overload, the overall effect can even be 
acceleration in fatigue crack growth rates 
(Ohrloff et al 1988; Borrego et al 2005). 

Besides overloads and underloads the 
simple variable amplitude load sequences 
most commonly used to study the load 
interaction phenomenon are high-low (Hi-
Lo), low-high (Lo-Hi) and change in stress 
ratio block load sequences as schematically 
represented in Fig. 3.  

Fig. 4 illustrates the typical transient 
crack growth behaviour obtained following 
Hi-Lo and Lo-Hi block sequences under 
constant K conditions. 

The effect of the Hi-Lo block is similar 
to that observed for the peak overload. 
However, for this load sequence, the 
retardation is always immediate and not 
preceded by the acceleration phase (Ng’ 
Ang’a and James 1996; Borrego et al 
2008). The Lo-Hi sequence produces an 
acceleration of crack growth rate, above the 
steady state level expected for the high 
block, followed by a gradual reduction to 
the corresponding steady-state K2 level. 
This behaviour is identical to that generally 
observed following an underload. 

 

1K
2K

 

2K
1K

 

2K
1K  

2K1K
 

Fig. 3 - Schematic representation of two-level block 
loading: a) high-low; b) low- high; c) and d) Step in 

stress ratio. 
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(a)

Crack length, a

1K
2K

 
 

2K
1K

Crack length, a

(b)

 
Fig. 4 - Schematic representation of crack growth 

behaviour following two-level block loading: a) Hi-
Lo block; b) Lo-Hi block. 

 

Relatively to the loading sequences (c) 
and (d) depicted in Fig. 3, the influence of 
the mean stress on the transient crack 
growth behaviour following a load step in 
Hi-Lo and Lo-Hi block sequences shows 
that the crack growth increment affected by 
the step in load is increased, although only 
slightly, when the stress ratio increases. 
However, a significant reduction of the 
delay cycles with increasing R is generally 
observed (Borrego et al 2008). Therefore, 
similar to the generally observed behaviour 
in tensile overloads, in steels (Shin and Hsu 
1993) as well as in aluminium alloys 
(Borrego et al 2003), the retardation effect 
is reduced with increasing stress ratio.  

For simple load histories containing 
combinations of overload and underload 
cycles, most available test results suggest 

that if an underload immediately follows an 
overload the degree of retardation due to 
overloading is reduced but not eliminated. 
An underload applied prior to an overload, 
on the other hand, has little effect on the 
degree of crack retardation (Taheri et al 
2003). Therefore, an underload applied 
immediately after an overload reduces the 
post overload retardation more significantly 
than an underload which immediately 
precedes an overload, as depicted in Fig. 5. 

 

Applied cycles, N

load variation

 

Fig. 5 - Typical crack growth behaviour under seve-
ral combinations of overload and underload cycles in 

aluminium alloys. 

 

3 - MODELS FOR VARIABLE AMPLITUDE 
FATIGUE CRACK GROWTH 

Researchers have proposed several 
models to describe the overload retardation 
behaviour. Generally, these retardation mo-
dels may be classified into two main cate-
gories: crack tip plasticity models and crack 
closure models. The crack tip plasticity mo-
dels are based on that assumption that crack 
growth retardation occurs due the large 
plastic zone developed during overloading. 
The residual compressive stresses formed in 
this zone will reduce the magnitude of the 
tensile stresses during the next fatigue cycle 
and tend to delay the crack growth. The 
earliest crack tip plasticity models are the 
Wheeler model (Wheeler 1972) and the 
Willenborg model (Willemborg 1971), 
proposed in the early 1970s, and are still 
used, mainly by their simplicity.  

The other main category of retardation 
models are based on the crack closure 
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approach, considering plastic deformation 
and crack face interaction in the wake of the 
crack, proposed by Elber (1972). 

 

3.1 - Wheeler model 

The Wheeler model (Wheeler 1972) is a 
simple model that calculates the fatigue 
crack growth retardation following a single 
tensile overload by introducing a 
retardation parameter, R, which prescribes 
a reduced growth rate for fatigue cracks 
advancing through the expanded plastic 
zone produced by the overload.  

The retardation parameter R can be 
multiplied to any constant amplitude fatigue 
model. Therefore, applying the Wheeler 
model to the Paris law the following 
equation is obtain:  

 m
R KC

dN

da   (1) 

The retardation parameter, R, is defined 
as (Wheeler 1972): 


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where aOL is the crack length when the 
overload is applied, ai is the crack length at 
each load cycle i, rOL is the size of the 
plastic zone produced by the overload at 
aOL, rp,i is the size of plastic zone produced 
by the post-overload constant amplitude 
loading at current crack length ai and n is an 
adjustable experiment-based shaping expo-
nent, which depends on the type of mate-
rial, geometry and overload magnitude. C 
and m are those used in the Paris equation. 

The size of the plastic zones rOL, and rP 
are obtained by the following equations: 
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where YS is the yield stress of the material 
and Kmax is the maximum stress intensity 

factor at the current crack length ai. For the 
constant amplitude loading with a single 
tensile overload, KOL corresponds to the 
maximum value of the overload. 

The plastic zone size factor  is 
dependent upon the constraints around the 
crack tip. In calculating the plastic zone 
size, several approaches have been 
proposed. The factor  is 1/ for plane 
stress and 1/3 for plane strain in the Irwin 
analytical solution (Irwin 1957). 

The Wheeler model has had some 
success in modelling the basic crack growth 
retardation due to single overloads in an 
otherwise constant amplitude spectrum. 
However, this model bears little physical 
meaning and the experimental 
determination of the retardation parameter 
is generally difficult. Moreover, this model 
cannot deal with the effects of underloads 
and more difficulties arise when both 
overloads and underloads are involved.  

 

3.2 - Willemborg model 

In the Willemborg model (Willemborg 
1971) the amount of retardation following a 
single overload is obtained using an 
effective stress intensity factor defined by 
the following expression:  

dReieffi KK)(K   (4) 

where (Ki)eff and Ki are the effective and 
apparent (under constant amplitude) stress 
intensity factors in each load cycle i, 
respectively.  

The modified stress intensity factor that 
includes retardation, KRed, is given by the 
following equation: 

imax,
OL

OLi
OLdRe K

r

aa
1KK 


  (5) 

where KOL is the overload stress intensity 
factor and Kmax,i the maximum stress 
intensity factor in each load cycle i.  

When the current crack length has 
extended through the plastic zone produced 
by the overload the retardation stops, 
therefore the retardation stress intensity 
factor is set to zero (KRed=0). Furthermore, 
any overload with high magnitude than the 
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previous one produces a new retardation 
effect, which is independent of the previous 
retardation. 

In this model the retardation effect in the 
crack growth is produced by using the 
effective stress ratio in each load cycle i, 
(Ri)eff, given by,  

effimax,

effimin,
effi )K(

)K(
)R(   (6) 

in any constant amplitude fatigue crack 
propagation law which takes into account 
the stress ratio effect. Willemborg (1972) 
proposed the Forman equation, therefore,  

effceff

n
eff

KK)R1(

)K(C

dN

da






  (7) 

where Kc is the critical stress intensity 
factor and C and n experimental constants 
obtained under constant amplitude loading.  

The Willemborg model does not 
incorporate any empirical parameters, being 
only necessary to now the yield stress of the 
material in order to calculate the plastic 
zone size. However, this model is not 
always reliable for predicting overload 
retardation in some materials (Taheri et al 
2003), and presents the limitation of 
predicting crack arrest for overloads with 
magnitude KOL ≥ 2 × Kmax,i. 

The multi-parameter yield zone model, 
proposed by Johnson (1981), is a 
modification to the Willenborg model. This 
modified model is able to account for the 
crack growth retardation, acceleration and 
underload effects. However, this 
improvement of the Willenborg model 
requires four load interaction parameters. 
The parameters have to be selected from the 
simple overload test data, which provide the 
best fit of the predicted to the experimental 
test results of these tests. 

 

3.3 - Crack closure model 

Based in experimental observations of 
crack face interaction in the wake of the 
crack, Elber (1972) argued that a load cycle 
is only effective in driving the growth of a 
fatigue crack if the crack tip is fully open, 
suggesting that the effective stress intensity 

range, Keff, should be obtain by the 
following expression: 

opmaxeff KKK   (8) 

where Kop represents the stress intensity 
factor corresponding to the opening stress 
of the crack, op. Therefore, the retardation 
effect in the crack growth can be obtained 
by, 

)K(f
dN

da
eff  (9) 

were function f can be the Paris law, 
Forman’s equation or other constant 
amplitude propagation law generally 
accepted.  

The crack closure approach generally 
permits to correlate the majority of the 
crack growth transients observed under 
simple variable amplitude loading 
sequences using experimental crack closure 
measurements, namely for peak overloads 
(Borrego et al 2001 and 2003), periodically 
applied overloads (Borrego et al 2005) and 
two-level block loading (Borrego et al 
2008). However, the major limitations of 
this model is that the Kop must be obtained 
for the specific material and loading 
condition for each load cycle, or by an 
approximated expression of the evolution of 
the opening stress proposed from 
experimental crack closure measurements, 
which is very complex and time consuming.  

Due to the difficulty in determining the 
opening stress, several models have been 
developed, which include analytical or 
numerical procedures, in order to obtain the 
evolution of the crack closure level under 
variable amplitude loading for each load 
cycle.  

Among these models one of the most 
used is the strip yield model proposed by 
Newman (1981) based on the Dugdale 
model, but modified to leave plastically 
deformed material in the wake of the 
advancing crack tip.  

The finite element analysis for 
computing directly the crack opening stress 
is complicated and also very time 
consuming. In the strip yield model 
proposed by Newman, the crack tip plastic 
zone and the region of residual plastic 
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deformation is divided up into one-
dimensional rigid perfectly plastic 
elements. The deformation state of these 
elements is monitored cycle-by-cycle and 
compared with the elastic displacements of 
the crack flanks. Contact stresses arise on 
the crack surfaces in order to meet the 
compatibility between the elastic crack 
flanks and the plastically deformed 
elements. The crack opening stress is then 
given by the point when the contact stresses 
become zero.  

In addition, the model uses a plastic 
constraint factor, , to account for the 
three-dimensional effects at the crack tip. 
This constraint factor is used to elevate the 
flow stress, o, at the crack tip to account 
for the influence of stress state (o) on 
plastic-zone sizes and crack-surface 
displacements. The flow stress is taken as 
the average between the yield stress and 
ultimate tensile strength of the material. For 
plane-stress conditions,  is equal to unity 
(original Dugdale model), and for simulated 
plane-strain conditions,  is equal to 3. 

The equations for computing the opening 
stress are a complex function of cyclic 
stress, load history, crack and specimen 
geometry, constraint and the element 
density used for calculating the plastic zone 
size. Therefore, the model is more 
computationally involved than the 
previously discussed models. 

Moreover, the strip-yield model does not 
always model the correct yield-zone shape. 
Therefore the constraint factor is generally 
used as a curve fitting parameter. Moreover, 
the effect of the stress history on the 
magnitude of the constraint factor is not 
clear and is still subject to ongoing research 
(ex: Skorupa 2007) 

Nonetheless, the strip yield model 
appears to be able to simulate delay 
retardation and initial crack growth 
acceleration immediately following an 
overload and several spectrum loading 
sequences.  

 

3.4 –Wheeler model enhancement 

The Wheeler retardation model (Wheeler 
1972) is one of the simplest and most 

widely employed models to quantify the 
fatigue crack growth retardation after a 
single overload and it offers potential for 
modifications and improvements. 

The model is based on the interaction of 
the overload plastic zone and the current 
plastic zone. However, its simple 
formulation is unable of accounting for the 
initial crack growth acceleration, delay 
retardation, the effects of underloads and 
overload interaction. 

Therefore, several authors proposed a 
number of modifications to the Wheeler 
model to improve its accuracy in predicting 
the fatigue crack growth transients 
following peak overloads, including 
multiple overloading situations (Yuen and 
Taheri 2006), as well as block loading 
(Wang et al 2009), and combinations of 
overloads and underloads, load sequencing 
and spectrum loadings, taking into account 
the stress ratio effect (Huang et al 2008). 

3.4.1 - Crack growth modelling proposed by 
Yuen and Taheri 

Yuen and Taheri (2006) proposed 
several modifications to the Wheeler model 
to improve its accuracy in predicting the 
complete crack growth transients following 
a single overload, including multiple 
overloading situations. This model was 
developed to consider the overload effect 
on crack growth based on the stress 
intensity factor. Since the stress intensity 
factor is an engineering concept for 
practical applications, the current effort is 
to search for an existing model that is based 
on the stress intensity factor.  

Yuen and Taheri (2006) incorporated, in 
the original Wheeler model, two additional 
parameters, one to account for the delay 
retardation and the other to take in 
consideration the overload interaction. 
Furthermore, they defined an effective 
stress intensity factor range to account for 
the initial crack growth acceleration 
generally observed immediately after 
overload application (Shin and Hsu 1993; 
Borrego et al 2001).  

Similar to the original Wheeler model, 
Yuen and Taheri (2006) applied there 
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modified Wheeler model to the Paris 
equation in the following form 

  m
acIDR KC

dN

da   (10) 

where R is the retardation parameter as 
defined in the original Wheeler model, Eq. 
(2), D is the delay parameter, I is the 
overload interaction parameter and Kac is 
the accelerated stress intensity factor range. 
Under constant amplitude stable crack 
growth, R=1, D=1, I=1 and Kac=K. 

Yuen and Taheri (2006) obtained the 
retardation parameter R calculating the size 
of the plastic zones rOL, and rP using Eq. 
(3.1) and Eq. (3.2), respectively. However, 
for these authors the  constant of the 
referred equations is considered the 
effective plastic zone size constant, which 
they established by determining from the 
experimental data the total retardation crack 
length, i.e., the crack length at which the 
crack growth rate resumes the constant 
amplitude crack growth level, ar.  

The delayed-retardation parameter D is 
defined as: 
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where rd,OL is the size of the overload 
effective delay zone, rd,i is the size of the 
current effective delay zone and q is the 
shaping exponent for the modified model.  

According to Eq. (11) the delay 
parameter is at its maximum immediately 
following the overload and decreases to 
unity at the point of minimum crack growth 
rate. 

The size of the overload effective delay 
zone and of the current effective delayed 
zone can be assumed to be calculated in the 
same manner as the corresponding plastic 
zones (Eq. (3)): 
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where  is the effective delay zone size 
constant, which  as to  be established by de- 

 

 

Fig. 6 – Illustration of the terms defining the delay 
parameter: (a) at ai; (b) at ai=aOL+ad; Yuen and 

Taheri (2006). 
 

termining from the experimental data the 
crack length at where the crack growth rate 
achieves the minimum value, ad.  

As illustrated in Fig. 6(a) the overload 
applied at aOL develops an overload 
effective delay zone size, rd,OL, resulting 
into the delay crack growth retardation. The 
delay retardation ceases when the crack 
propagates further to the crack size 
ai=aOL+ad. At this moment the crack tip 
effective delay zone size is denoted rd,d. As 
illustrated in Fig. 6(b), the relationship of ad 
to the effective zone size is expressed by 
the following expression:  
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where Kd is the maximum stress intensity at 
ai=aOL+ad. Therefore, once the value of ad is 
experimentally obtained, the constant  in 
Eq. (13) is simply determined. 

The overload interaction parameter I is 
defined as presented in Eq. (14), where 
min,i is the minimum value of the 
retardation parameter R, which is 
calculated from previous overloads at the 
current crack length. 

According to the formulation presented 
in Eq. (14), during the crack growth, the 
average value of min,i, and thus the 
overload interaction parameter, decreases 
and crack growth retardation increases as 
the spacing between the overloads 
decreases for the same overload load 
magnitudes. This is because the number of 
the overloads from which the minimum 
retardation parameter is extracted further 
increases. 

The accelerated stress intensity factor 
range, Kac, is defined in the modified 
Wheeler model as presented in Eq. (15), 
where KOL is the overload stress intensity 
factor range and Ki the current stress 
intensity factor in each load cycle i. 

Eq. (15), states that the effect of the 
overload stress intensity factor range on 
crack growth acceleration is at its maximum 
immediately following the overload and 
decreases to zero at the end of the delay 
retardation crack length. 

In the work of Yuen and Taheri (2006), 
both single and multiple overloading 

fatigue tests were performed on 350 WT 
steel specimens and the fatigue life 
predictions by the original and the modified 
Wheeler model were compared. Contrary to 
the original model, the modified Wheeler 
model was able to predict the initial 
acceleration and the delay retardation under 
single peak overloads. Moreover, equations 
(10) to (15) were able to reasonably 
describe the crack growth transients under 
multiple overloading.  

Wang et al (2009) also applied the 
modified Wheeler model proposed by Yuen 
and Taheri (2006), setting the overload 
interaction parameter I=1, for analysing 
single tensile overloads as well as two-step 
high-low loading sequences on 16MnR 
steel specimens. The stress intensity factor 
range KOL was set to be KOL−Kmin for the 
overloading condition, where Kmin 
corresponds to the minimum load of the 
constant amplitude loading. For the high-
low sequence loading, KOL was set to be 
the stress intensity factor range KHi of the 
preceding higher loading step. It was clear 
that the modified Wheeler model can 
predict reasonably the overall crack growth 
transients produced by single tensile 
overloads and high-low block loading 
sequences. 

However, the modified Wheeler model 
proposed by Yuen and Taheri (2006) 
contains three additional constants, namely, 
, q and , which need to be experimentally 
obtained. Furthermore, similar to the 
original model, the modified model does 
not consider the stress ratio effect.  
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Therefore, additionally to the 
experiment-based shaping exponent of the 
original model, n, the values of the effective 
plastic size constant, , the shaping expo-
nent, q, and the fitting constant, , have to 
be experimental determined for each com-
bination of R ratio and overload level, KOL, 
from several single overload fatigue tests.  

3.4.2 - Crack growth modelling proposed by 
Xiaoping Huang et al 

It is well known that crack growth rates 
expressed in terms of the stress intensity 
factor range, K, depend on the stress ratio, 
R. Based on Kujawski (2001) two 
parameter driving force model, Huang and 
Moan (2007) proposed an equivalent stress 
intensity factor range model, which 
condenses the data obtained for different 
stress ratios under constant amplitude 
loading into a single curve scaled to R=0.  

Afterwards, Huang et al (2008) extended 
this model to take into account the loading 
sequence effect on crack growth under 
variable amplitude loading. They 
introduced the retardation parameter R of 
the original Wheeler model, with small 
modification to consider underload effects, 
into their equivalent stress intensity factor 
range model (Huang and Moan 2007), 
covering the stress ratio effect in stages I 
and II of the crack growth rate, which lead 
to the following expressions: 

    m
0th

m
0eq KKC

dN

da    (16) 

KMMK PR0eq    (17) 

where Kth0 is the threshold at R=0, C 
and m are those corresponding to R=0 and 
parameters MR and MP are correction 
factors for the equivalent stress intensity 
factor range.  

MR is the correction factor of the stress 
ratio effect, i.e., the parameter that 
promotes a simply horizontal shift of the 
curves corresponding do different R ratios 
to the curve of R=0, and MP is the 
correction factor to model the load 
interaction effects, which replaces the 
retardation parameter R of the original 
Wheeler model. The R ratio correction 
factor MR is defined as: 
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where and 1 are parameters depending 
on material properties (11).  

The present model implies that the crack 
growth rate exponent m is assumed to be 
independent of the R ratio. Parameters 
and 1 are set to certain values for the 
same kind of materials, for example, for 
aluminium alloys and steels 0.7 and 
1=1.2 (Huang and Moan 2007). 

The loading sequence interaction 
correction factor MP is defined as: 
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where n is a shaping exponent determined 
by fitting to the experimental data, set to the 
same value for the same material. The other 
variables are depicted in Fig. (7), where ry 
represents rp in Eq. (19). 

Since an underload reverses the plastic 
flow and depletes the resulting plastic zone, 
the yield zone size reduction caused by an 
underload can be quantitatively calculated 
using the following equations: 
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Fig. 7 – Illustration showing the variables and zones 
associated with the model proposed by Huang et al 

(2008), 
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 i
min

1i
minu  aYK     (21) 

where 
YS  is the compressive yield stress 

and i
min

1i
min    the minimum stresses up to 

and following the ith overload, respectively. 
The size of the plastic zone in front of the 
crack tip is dependent upon the constraint 
state around the crack tip, which is a 
function of the maximum stress, yield 
strength and plate thickness. In this model 
the plastic size factor  is modelled as a 
continuous function of these variables (Hu-
ang et al 2008), making the calculation of 
the plastic zone sizes easy and more precise 
than those proposed by other researchers 
(Voorwald et al 1991; Guo 1999). 

In the work of Huang et al (2008), 
fatigue life perditions using this modified 
Wheeler model were performed in several 
materials under different variable amplitude 
loading sequences, namely: single, multiple 
and periodically applied overloads on 7075-
T6 aluminium alloy; underload following 
an overload and vice versa, as well as 
loading spectrum with steps in R ratio on 
2024-T3 aluminium alloy and multiple 
overloads (2 or 3) on 350 WT steel. The 
comparisons between experimental and 
predicted results showed that the model’s 
accuracy is satisfactory. 

However, it is important to notice that 
Huang et al (2008) represented, in all 
variable amplitude loading sequences 
analysed, the experimental data and the 
corresponding predictions only as a-N 
curves. Therefore, namely for single 
overloads, these researchers did not verified 
if this model is able to predict the initial 
acceleration and the following delayed 
retardation phases, only observed in the 
da/dN-K curves, following overload 
application.  

 

4- CONCLUSIONS 

In this paper several concepts, trends and 
prediction models of crack growth under 
variable amplitude loading have been 
presented and evaluated. 

The details of the analysed fatigue crack 
growth models under variable amplitude 

loading have been presented highlighting 
the merits and limitations of each model. 
From the literature it is observed that most 
of the models require one or more 
calibration parameters or constants to 
conduct crack growth analysis. Therefore, it 
is clear that curve fitting is used as an 
imported procedure to correlate the 
predictions with the experimental data. 
Furthermore, the predictions are strongly 
influenced by the parameters which have to 
be fitted to experimental data.  

Due to the number and complexity of 
the mechanisms involved in this problem, 
no universal model exists yet. The selection 
of the appropriate model is usually based on 
the researcher experience and persona1 
preference, thus accurate predictions remain 
problematic. Therefore, there is 
considerable scope to improve the present 
models and development of better and 
simpler ones. 
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