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ABSTRACT 
The main purpose of this work is to use the analytical mobility method to analyze journal 
bearings subjected to dynamic loads, with the intent to include it in a general computational 
program that has been developed for the dynamic analysis of general mechanical systems. A 
simple journal bearing subjected to a dynamic load is chosen as a demonstrative example, in 
order to provide the necessary results for a comprehensive discussion of the methodology 
presented. 
 
1. INTRODUCTION 

Most mechanical systems are expected to 
work in different regimes. In what respects 
to the journal bearing, as part of a 
equipment, this means that variations of 
rotating speed and of magnitude and 
direction of the applied load must be 
accounted for in the design stage. Examples 
include reciprocating machinery such as 
compressors, internal combustion engines 
and other industrial processing machinery.  

Lubricated joints are designed so that, even 
in the worst conditions, journal and bearing are 
not expected to come into contact. Two very 
good reasons for designing journal bearings in 
this way are to reduce friction and to minimize 
wear and rupture risks. Furthermore, the 
hydrodynamic fluid film developed plays an 
important role in the stability of the 
mechanical systems, due to its damping 
characteristics, which can not be disregarded.  

Lubrication theory for the dynamically 
loaded journal bearing is mathematically 
complex and, over the last few decades, 
several analytical approaches have been 
proposed. The multigrid techniques based 

on the Elrod algorithm [1] and the finite 
element methods [2] of analysis are among 
the most popular. The finite element 
methods are probably the most accurate and 
versatile, but tend to be very time 
consuming and require high level of 
knowledge, not accessible to the common 
designer and, so, remaining confined to 
research and development. Therefore, based 
on simplifying premises, engineers and 
designers prefer to use simpler and still 
accurate methods, such as the mobility 
method [3,4] and the impedance method 
[5,6]. In general, these two approximate 
techniques, which belong to the category of 
rapid methods, are employed to perform 
analysis of simple journal bearings.  

The modelization of various types of 
joints in mechanical systems has recently 
received considerable attention from 
several authors [7-9]. The concept of 
perfect joint is often used in simulating the 
dynamic of mechanical systems. Although, 
effects due to clearance, friction and 
lubrication are all the time in the real joints, 
which making the perfect joint concept 
unreal. Therefore, over the last few years, a 
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number of research works have been 
developed to incorporate these phenomena. 
The first models only included the effect of 
clearance by modelling the joint elements 
as colliding bodies, being the dynamics of 
the joints controlled by contact forces [7]. 
This dry model was later improved in order 
to incorporate the friction effect and 
expanded to three-dimensional mechanical 
systems [9]. Ravn et al. [10], based on the 
work of Pinkus and Sternlicht [11], 
developed a simple model for dynamic 
analysis of mechanical systems with 
lubricated joints. This model, in spite of 
accounting for the squeeze-film and wedge-
film effects in dynamically loaded journal 
bearings, is only valid for long journal 
bearings. Schwab et al. [12] used the 
impedance method to study the influence of 
the fluid lubricant on the dynamics of a 
slider-crank mechanism with a clearance 
joint. The main advantage of this model is 
that it takes into account the length of the 
journal bearing, that is, it considered the 
fact of the journal being shorter or longer. 
However, the model, based on the 
impedance method, is more adequate for 
rotor dynamics than for study the joints in 
mechanical systems like the one that is 
found in internal combustion engines [13]. 
This circumstance is due to the fact that 
journal and crank masses are relatively low 
compared to the applied loads on the 
journal bearings. While, the journal bearing 
masses in the rotor dynamics are relative 
large and can influence their dynamic. 
Flores et al. [14] proposed a new 
methodology that represents the dry 
clearance joints and the effect of the 
lubrication, including a transition phase 
between the dry contact and lubricated 
models.  

This work aims to use the analytical mobility 
method to study journal bearings subjected to 
dynamic loads, with the intent to include it in a 
general computational program, such as the 
DAP (Dynamic Analysis Program), that has 
been developed for the dynamic analysis of 
general mechanical systems. A simple journal 
bearing subjected to a dynamic load is chosen 
as a demonstrative example, in order to 
provide the necessary results for the 

comprehensive discussion of the model 
presented throughout this work. 

 

2. GEOMETRIC CHARACTERISTICS 
OF JOURNAL BEARINGS 

 
2.1. Journal Bearing Geometry 

When the journal and bearing have relative 
rotational velocities with respect to each other, 
the amount of eccentricity adjusts itself until 
the pressure generated in the converging 
lubricating film balances the external loads. 
Figure 1 depicts the basic geometric of a 
journal bearing. The pressure generated, and, 
hence, the load capacity of the journal bearing, 
depends on the journal eccentricity, the 
relative angular velocity, the effective 
viscosity of the fluid lubricant and the journal 
bearing geometry and clearance. Usually, the 
effect of hydrodynamic pressure is looked as 
the contribution of two different actions; 
wedge and squeezing. The squeeze action 
relates the radial journal motion with the 
generation of load carrying capacity in the 
lubricant film, whilst the wedge action deals 
with the relation between relative rotational 
velocity of the journal and bearing ability to 
produce such pressure.  

The film thickness can be written as, 

)( εcosθ1ch +=   (1)  

where c is the radial clearance of the 
journal bearing, ε is the eccentricity ratio 
and θ represents the coordinate in the 
circumferential direction, being measured 
from the maximum film thickness. 
The components of vector eccentricity in 
the X and Y (Fig.1) directions are expressed 
by, 

φsineex =  (2)  

φcoseey −=  (3)  

or in non-dimensional form, 

φεε sinx =  (4)  

φεε cosy −=  (5)  
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Fig.1 – Basic geometry of a journal bearing. 

 

2.2. Journal Velocities 
The relative motion of the journal and the 

bearing surfaces introduces both tangential, 
U, and normal, V, components of velocity. 
These velocities can be expressed in terms 
of the journal bearing components by 
noting that the journal rotates about its own 
axis and translates with respect to the 
bearing centre. Figure 2 shows the velocity 
components in a cross section of a journal 
bearing dynamically loaded. A point P on 
the journal surface is located at an angle θ 
from the line of centres, whereas the 
tangential velocity U takes into account the 
rotational and translational components of 
motion. 

The tangential velocity component on the 
journal surface, due to the journal rotation, 
is equal to ωR, while the translational 
velocity components of the journal with 
respect to the bearing centre are e&  and φ&e  
as illustrated in Fig.2. The tangential 
velocity component at point P, due to the 
journal rotation, is ωRcosα. Since the angle 
α is very small, ωRcosα is approximately 
equal to ωR. In addition, the tangential 
velocity component at point P caused by 
the translational motion is 

θφθ cosesine && − . Thus, the tangential 
velocity at point P can be written as, 

θφθω cosesineRU && −+=  (6)  
or 

θφεθεω coscsincRU && −+=  (7)  

In a similar way, the normal velocity, V, 
is equal to sum of the normal components 
of the rotational and translational velocities. 
The normal velocity component due to 
rotational velocity is ωRsinα. Again, noting 
that α is very small, then ωRsinα is 
approximately equal to ωRtanα=ω θ∂∂h   
[15]. The translational motion of the journal 
also causes normal velocity component as 

θφθ sinecose && + . Thus, the global normal 
velocity at point P is expressed by, 

θφθ
θ

ω sinecosehV && ++
∂
∂

=  (8)  

or 

θφεθε
θ

ω sinccoschV && ++
∂
∂

=  (9)  
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Fig.2 – Cross section of a journal bearing dynami-

cally loaded: velocity components. 

 

3. REYNOLDS’ EQUATION FOR 
DYNAMICALLY LOADED JOUR-
NAL BEARINGS 

 
3.1. Pressure Distribution 

The Reynolds’ equation for a journal 
bearing subjected to dynamic loads can be 
written as [11],  
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(10) 

where h is the fluid film thickness, µ is the 
absolute fluid viscosity, p represents the film 
pressure, U is the relative tangential velocity 
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and V is the relative normal velocity between 
journal and bearing. The radial and axial 
directions are denoted by x and z. 

The three terms on the right-hand side of Eq. 
(10) contribute to the hydrodynamic forces in 
the journal bearing. The term xUh6 ∂∂  
implies a variation of tangential velocity along 
the bearing surface. The second term, 

xhU6 ∂∂ , represents the action of the journal 
rotation over a wedge-shaped fluid film. 
Finally, the 12V is the expression for the radial 
velocity of the journal centre and is response-
ble for the squeeze film effect. The Reynolds’ 
equation (10) should be expressed in term of 
the journal bearing variables e, φ and θ.  

Thus, neglecting the curvature of the fluid 
film, the x coordinate in the unwrapped film is 
written as, 

θRx =  (11) 

and, hence, 

θ∂=∂ Rx   (12) 

Now, using Eq. (12) together with the 
tangential and normal velocities given by 
Eqs. (6) and (8), the terms of the right-hand 
side of Eq. (10) can be expressed as, 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++

++
=

∂
∂

θθφθ

θφθ

sincos
R

ecos
R
ee

sin
R

cecos
R
ec

x
Uh

&&

&&

22
66

 

(13) 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−+
=

∂
∂

−

θθφ

θθω

sincos
R

e

sin
R
eesine

x
hU

&

&

2

2

66

 

(14) 

 
( )θφθω sinecosesine12V12 && ++−=

 

(15) 
 

The detailed deviation of these equations 
is provided in Appendix I. Using Eqs. (13) 
up to (15), the Reynolds’ equation for finite 
length journal bearings is, 
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(16) 

The Reynolds’ equation given by Eq. (16) 
is one non-homogeneous partial differential 

equation of elliptical type, exact solution of 
which is difficult to obtain and, in general, 
involves a considerable numerical effort. 
The infinitely short [16] and infinitely long 
[17] journal bearing theories are commonly 
used to obtain approximate solutions. These 
two particular cases correspond to neglect 
the first or second term of Eq. (16). 

Dubois and Ocvirk [16] considered a 
journal-bearing where the pressure gradient 
around the circumference is very small 
when compared with those along the length, 
and the first term on the left-hand side of 
Eq. (16) can be ignored. This assumption is, 
in general valid for length-to-diameter 
(L/D) ratios up to 0.75. Hence, the 
Reynolds’ equation for an infinitely short 
journal bearing is written as, 
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(17) 

The pressure boundary conditions are 
p=0 at z=±L/2 and 0zp =∂∂  at z=0. Thus, 
applying these conditions and integrating 
Eq. (17) yields the pressure distribution as, 

( )[ ] ⎟
⎠
⎞⎜

⎝
⎛ −−+= 22502

3
6 L.zsincos
h

cp θωφεθεµ && (18) 

where c is the radial clearance, θ is the angular 
coordinate, z is the axial direction, L represents 
the journal bearing length, µ is the dynamic 
fluid viscosity, h denotes the film thickness 
and ω is the relative angular velocity between 
the journal and bearing. The dot in the above 
expression denotes the time derivative of the 
corresponding parameter. 

For an infinitely long journal bearing a 
constant fluid pressure and negligible leakage in 
the axial direction are assumed. This solution, 
derived by Sommerfeld [17], is valid for length-
to-diameter (L/D) ratios greater than 2. Thus, 
ignoring the second term on the left-hand side 
of Eq (16) yields the Reynolds’ equation for an 
infinitely long journal bearing as, 
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(19) 

and the pressure distribution in the fluid of 
an infinitely long journal bearing is given 
by, 
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(20) 

where R is the nominal journal bearing 
radius and the remaining parameters have 
the same meaning as defined previously. 

Equations (18) and (20) enable the 
calculation of the pressure distribution in 
hydrodynamic infinitely short and infinitely 
long journal bearing as functions of the 
dynamic parameters and geometry of the 
journal bearing. 
 
3.2. Load Carried by Journal Bearings 

Once the pressure distribution is known, 
the load carried by the fluid film can be 
evaluated by integrating the pressure 
around the journal bearing. For any 
elementary segment, Rdθdz, at any angle θ 
to the line of centres, the fluid reaction 
force that equilibrates the applied load is 
pRdθdz. It is convenient to determine the 
force components in the directions tangent, 
Fε, and perpendicular, Fφ, to the line of 
centres. These two force components can be 
evaluated as, 

 ∫ ∫−
−= 2

L

2
L

o

i

dzdcospRF
θ

θ

ε θθ  (21)  

 ∫ ∫−
−= 2

L

2
L

o

i

dzdsinpRF
θ

θ

φ θθ  (22)  

The boundary conditions in the pressure 
distribution deal with problems related to 
the numerical solution of the Reynolds’ 
equation, namely the definition of the 
boundary of cavitation and film 
regeneration. The boundary condition is a 
virtual line that separates the zone where 
there is a continuous fluid film and the zone 
where the film is cavitated. Thus, the force 
components expressed by Eqs. (21) and 
(22) can be obtained by integrating the 
pressure field either in the entire domain 2π 
or half domain π, corresponding to the 
adoption of Sommerfeld’s or Gümbel’s 
boundary conditions, respectively [18,19].  

The Sommerfeld’s boundary conditions, 
complete or full film, do not take into 

account the cavitation phenomenon and, 
consequently, contemplate the existence 
negative pressure for portion π<θ<2π. This 
case is not realist in many applications due 
to the fluid incapacity to sustain significant 
sub-ambient pressures. The Gümbel’s 
boundary conditions, which account for the 
rupture film, preconize the existence of a 
zero pressure zone for the portion between 
π and 2π. Therefore, the Gümbel’s 
conditions are usually employed, being the 
outlet film angle θo evaluated as θo=θi+π. 

 

4. MOBILITY METHOD 
 
4.1. Description of the Method 
The Reynolds’ equation (16) in the case 

of finite length journal bearings does not 
have analytical solution, because it is an 
elliptical partial differential equation of 
second order. Therefore, the numerical 
methods must be used.  

Broadly, the rapid methods used to 
perform the design of dynamically loaded 
journal bearings fall into three main 
categories, namely, the infinitely short 
simplification [16], the infinitely long 
approach [17] and methods based on the 
combination of these two first approaches 
[20]. The multigrid techniques [1] and the 
finite element methods [2] are also popular 
due their accuracy but tend to be difficult to 
use and require high computational effort 
when compared to rapid methods.  

Among the different existing approaches, 
the mobility method developed by Booker 
[3,4] appears well adapted to analyze  
journal bearings subjected to dynamic loads 
in so far as it allows a quick and accurate 
solution. Booker [3] introduced the concept 
of mobility to analyze this kind of journal 
bearing problems. This graphical method is 
useful to predict the journal centre orbit 
marching in time from some initial 
eccentricity ratio on the mobility maps, as 
illustrated in Fig.3. However, this approach 
tends be tedious to use and is not adequate 
to incorporate in any computational 
program to transform it in an automatic and 
general method. Later Booker [4] presented 
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a scalar form of the mobility method and 
extended it to numerical application. This 
new approach is computationally efficient 
because the equations of journal bearing 
motion are written in explicit form, 
avoiding the need for time consuming 
involved in the conventional solution of the 
Reynolds’ equation and makes the method 
very fast. Based on the finite element 
method, Goenka [2] improved the accuracy 
and scope of the Booker’s work to evaluate 
the mobility vector, maximum pressure and 
the angle where the maximum pressure 
occurs. 

The mobility vector, M
r

, has the module 
M and is oriented, with respect to the 
mobility direction, by angle β, as it is 
illustrated in Fig.3, which allows to write 

McosβM ε =  and βφ sinMM −=  [13]. 

F
φ

θ

M

M εM ε

MφMφ

ε

φ

ε=1

β

 
Fig.3 – Representation of mobility vector and its 

components. 
 

The right hand term of Reynolds’ 
equation (16) includes the derivative of the 
eccentricity ratio, ε& , and the time rate of 
the attitude angle, φ& , which are the 
unknown quantities, and, by integration, it 
is possible to determine the trajectory of the 
journal centre. In order to simplify the 
solution of the Reynolds’ equation, Booker 
[4] proposed to express the ε&  and φ&  as 
function of the mobility components as, 
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in which the mobility components εM  and 
φM  are given by, 
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The solution of the above equations is 
complex and involves a good deal of 
mathematical manipulation. However, 
Booker [4] gave the numerical solution to 
Eqs. (23)-(27), for positive force, F>0, 
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and for negative force, F<0, 
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where 
φφ κζε sinMcosMM +=  (32)  

φφ κζφ cosMsinMM +−=  (33)  
φεζ cos=  (34)  
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φεκ sin=  (35)  

For a specified external load F(t), Eqs. 
(23) to (35) are solved for ε&  and φ& , and 
then integrated with respect to time, in 
order to obtain the journal centre trajectory, 
that is, ε(t) and φ(t). 
 
4.2. Computational Strategy 

The general view of the flowchart 
program for analysis of journal bearings 
subjected to dynamic loads, based on the 
mobility method, is illustrated in Fig.4. The 
necessary steps to perform this analysis are 
summarized as follows, 

(i) Start at instant of time t0 with given 
initial conditions for eccentricity ratio 
ε0, attitude angle φ0 and external applied 
load F0, as well as the geometric and 
kinematic parameters of the journal 
bearing L, D, c, ω, and dynamic fluid 
viscosity, µ; 

(ii) Compute the location of the journal 
centre according to Eqs. (34) and (35); 

(iii) Evaluate the auxiliary mobility vectors 
defined by Eqs. (28)-(31); 

(iv) Re-evaluate the mobility components 
using Eqs. (32) and (33); 

(v) Determine the journal velocity 
components, ε&  and φ& , according to 
Eqs. (23) and (24); 

(vi) Numerically integrate the journal 
velocity components in order to obtain 
the eccentricity ratio ε and attitude 
angle φ at the next time step. Most 
authors used Euler integration method 
rather than other more accurate method, 
e.g. Runge-Kutta or predictor-corrector 
schemes, since, for this type of 
problem, the computational time is 
substantially reduced without penalty 
the results accuracy; 

(vii) Update the time variables, go to step (ii) 
and proceed with the process for the 
new time step. Perform these steps until 
the final time of analysis is reached. 

 

5. DEMONSTRATIVE APPLICATION 
TO A JOURNAL BEARING SUBJEC-
TED TO A DYNAMIC LOAD 

A simple journal bearing, as illustrated in 
Fig.5, subjected to a dynamic load is chosen 
here as numerical example to demonstrate 
the use of the mobility method presented in 
the previous section. The dimensions were 
based on the journal bearing test rig that has 
been studied by Bouldin and Berker [21], 
which, in turn, was chosen to be 
representative of a common journal 
bearings used in automobile engines. 
Journal bearings of slider-crank mechanism 
of internal combustion engines are typical 
examples of dynamically loaded journal 
bearings that present complex load diagram 
as well as unsteady relative motion. 

The journal bearing properties and initial 
conditions are listed in Table 1. The length-
to-diameter (L/D) of this journal bearing is 
0.4, and, therefore, it can be considered a 
short journal bearing. The full time 
simulation corresponds to two full crank 
rotations. The dynamic fluid viscosity is 
taken as to 4.16 cP, which is a typical value 
used in internal combustion engines. The 
external load applied on the journal bearing 
is taken from reference [21] presents the 
form of Fig. 6. The load is plotted against 
the crank angle. 

In the present example, the value for 
journal centre motion and the attitude angle 
are plotted as a quantitative measure of the 
performance of the journal bearing, as 
shown in Figs. 7a and 7b. In addition, the 
maximum pressure distribution at the 
central plane of the journal bearing and 
minimum fluid thickness are also presented 
and analyzed, as illustrated in Figs. 8 and 9, 
respectively. 

Figure 7a shows the journal centre 
trajectory for the initial conditions for 
eccentricity ratio and attitude angle equal to 
ε0=0.1 and φ0=1.5 rad, respectively. It is 
observable that the external load produces 
an  unsteady  motion  of  the  journal within  
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Fig.4 – Computational flowchart of the mobility method. 
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Fig.5 – Journal bearing subjected to a variable external load. 

Tab.1 – Journal bearing properties. 

Journal bearing length 25.40 mm Initial eccentricity, ε0 0.1 
Journal bearing diameter 63.50 mm Initial attitude angle, φ0 1.5 rad 

Radial clearance 35.56 mm Initial time simulation 0.0000 s 
Dynamic fluid viscosity 4.16 cP Final time simulation 0.0060 s 

Angular velocity 2000 rpm Integration time step 0.0001 s 

 
the bearing boundaries. It should be noted 
that with this approach of mobility method 
the choice of the initial conditions does not 
affect the relative journal bearing motion, 
only influences the first instants of 
simulation. Thus, the cyclic behaviour of 
the journal, independent of the assumed 

initial values for ε0 and φ0, is reached very 
quickly. In Fig.7b the journal bearing 
attitude angle is shown as function of the 
crank angle. In dynamically loaded journal 
bearings both the eccentricity and attitude 
angle vary with the cycle of applied load, 
and the correct design should ensure that 
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the combination of load and speed rotation 
does not lead a dangerous small minimum 
film thickness. 

Since the length-to-diameter ratio of the 
journal bearing is equal to 0.4, the pressure 
distribution can be evaluated using Eq. (18) 
in which the positive pressure region lies 

between θi and θo obtaining by equating Eq. 
(18), yielding, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−= −

)(
tan 1

i ωφε
εθ
&
&

 (36)  

πθθ += io  (37) 
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Fig.6 – Real journal bearing load presented by Bouldin and Berker [21]. 

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
ε x

εy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 180 360 540 720

Crank angle [º]

A
tti

tu
de

 a
ng

le
 [r

ad
]

(a)                                      (b)  
Fig.7 – (a) Journal centre motion; (b) Attitude angle as function of the crank angle. 
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It is important to note that angles θi and 
θo change with the work conditions of the 
journal bearing. Thus, for each instant of 
simulation, the pressure is function of the 
journal bearing geometric properties, its 
kinematic characteristics and varies in both 
circumferential and axial directions.  

The maximum pressure field occurs at the 
central plane of the journal bearing, being the 
pressure profile plotted in Fig.8. The region of 
the positive pressure is limited to half of the 
circumferential extension, and in the other half 
the film is assumed to rupture due to the 
existence of sub-ambient pressures, as 
Gümbel’s boundaries conditions preconize. 

The minimum film thickness is related to the 
eccentricity ratio and radial clearance as 
follows, 

)1(chmin ε−=  (38)  

The variation of the minimum film thickness 
during the dynamic simulation of journal 
bearing gives the value of the absolute 
minimum film thickness. This value should be 
greater than the average asperity height of the 
journal bearing surfaces in order to prevent the 
metal-to-metal contact and, consequently, to 
avoid the friction and wear, besides keeping 
the hydrodynamic approach valid. From the 
journal bearing design view point, the safe 
value for film thickness is 2.5 µm, and, in 
practical, the minimum film thickness should 
be at least (1.0-1.5)×2.5 µm [15]. Figure 9  

shows the variation of the minimum film 
thickness with the crank angle. The dashed 
horizontal line in the same figure represents 
the safe film thickness. By observing Fig.9, it 
clear that the effective hydrodynamic 
lubrication is performed on the journal 
bearing, meaning that the journal and bearing 
surfaces are completely separated. 

 

6. CONCLUDING REMARKS 
In this work, the analytical mobility 

method for dynamically loaded journal 
bearings was presented, with the intent to 
include it in a general computational 
program, such as the DAP (Dynamic 
Analysis Program), that has been developed 
for the dynamic analysis of general 
mechanical systems. An illustrative 
example and numerical results were 
presented, being the efficiency of the 
method discussed in the process of their 
presentation. 

The mobility method seems to be quite 
useful and numerically efficient when 
compared to others approaches such as the 
multigrid techniques based on the Elrod 
algorithm and the finite element methods of 
analysis. In fact, the mobility method is 
sufficiently accurate, fast and easy to 
understand and apply by designers and 
engineers that do not need to be very 
expertise in the field of tribology.  
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Fig.9 – Variation of the minimum fluid film thickness. 
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In general, in the dynamically loaded 
journal bearings the classic analysis 
problem is predicting the motion of the 
journal centre under arbitrary and known 
loading, such as in the example presented in 
this work. Conversely, when simulating 
mechanism with journal bearings, the time 
variable parameters are known from the 
dynamic analysis and the instantaneous 
forces on the journal bearings are evaluated. 
Thus, in order to incorporate the mobility 
method in a computational program for 
dynamics of mechanisms, the mobility 
method has to be inverted. 
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NOMENCLATURE 
c radial clearance between the journal and 

bearing, c=RB-RJ, [L] 
D nominal diameter of the journal bearing, [L] 
e eccentricity [L]

 

 
e&  variation or radial velocity [LT-1]

 

 
F journal bearing applied load [F] 
h fluid film thickness [L] 
L journal bearing length [L] 
M mobility vector 
p hydrodynamic film pressure [FL-2] 
R nominal journal bearing radius [L] 
t time [T-1] 
U tangential velocity component [LT-1] 
V normal velocity component [LT-1] 
ε eccentricity ratio, ε=e/c, [-] 
ε&  non-dimensional eccentricity ratio variation, 

ce&& =ε , [T-1] 
θ coordinate in the circumferential direction [-] 
θi film inlet edge position [-] 
θo film outle edge position [-] 
µ absolute viscosity of fluid lubricant [FL-2T] 
φ attitude angle [-] 
φ&  time rate of attitude angle [T-1] 
ω relative angular velocity [T-1] 
ω  average angular velocity, 2ωω = , [T-1] 

 
APPENDIX I 

The x coordinate in the unwrapped film is, 
θRx =   (A1)  

and, consequently, 
θ∂=∂ Rx   (A2) 

The tangential and normal velocities of the journal bearing are expressed as, 

θφθω cosesineRU && −+=   (A3) 

and, 

θφθ
θ

ω sinecosehV && ++
∂
∂

=   (A4) 

Thus, using Eqs. (A2) and (A3), xU ∂∂  can be obtained as, 

θ∂
∂

=
∂
∂ U

Rx
U 1   (A5) 

( )θφθω
θ

cosesineR
Rx

U && −+
∂
∂

=
∂
∂ 1   (A6) 

( )θφθ sinecose
Rx

U && +=
∂
∂ 1   (A7) 

Since, the fluid film thickness is expressed by, 
ecosθch +=   (A8) 
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and therefore, 

( ) ( )θφθθ sinecose
R
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x
Uh && ++=
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∂ 166   (A9)  
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From Eqs. (A2) and (A8), xh ∂∂ can be written as, 

θ∂
∂

=
∂
∂ h

Rx
h 1   (A11) 

( )θ
θ

cosec
Rx

h
+

∂
∂

=
∂
∂ 1   (A12) 

( )θsine
Rx

h
−=

∂
∂ 1   (A13) 

and, consequently, the term xhU6 ∂∂−  is expressed as follows, 

( ) ( )θθφθω sine
R
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From Eq. (A8), θ∂∂h can be written as, 

( )θ
θθ

cosech
+

∂
∂

=
∂
∂   (A16) 

θ
θ

sineh
−=

∂
∂   (A17) 

Then, the term 12V is obtained as, 

( )[ ]θφθθω sinecosesineV && ++−= 1212   (A18) 

( )θφθθω sinecosesineV && ++−= 1212   (A19) 

Combining Eqs. (A10), (A15) and (A19), the right-hand side of the Reynolds’ equation (10) is given by, 
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Since ce=ε  and ce&& =ε , Eq. (A20) can be rewritten as, 
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For typical journal bearings, 1Rc << , then the final form of Reynolds’ equation is given by, 
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where 2ωω =  is the average angular velocity of the journal and bearing. 


