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ABSTRACT 

This paper presents an analysis of the deflection of isotropic circular plates with stiffening rings under 
the action of static pressure. The linear equation with variable coefficients governing the deflection of 
circular plates under such loading is derived. The effect of the stiffening rings are introduced by 
approximating the varying thickness/ plate radius by a Fourier series. Numerical examples are 
illustrated for non-stiffened plates of two thicknesses and two stiffened plates, with one and two 
stiffening rings respectively, all under clamped-edge boundary condition. Results showed the role of 
the stiffening rings in minimizing the deflection of the plate and eventually the induced stresses under 
the action of external pressure. Moreover, the present model results showed close agreement with  
those obtained by applying a finite element analysis using ANSYS code consequently, illustrating the 
versatility of this simple and elegant method. 
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Notations  
W(r,θ)   Transverse deflection 
r,θ   Polar coordinates of a point in the mid-plane of plate 
a  Outer radius of plate 
y  Plate thickness as a function of radius 
h1  Minimum plate thickness 
h2  Plate with stiffening rib thickness 
ν  Poisson's ratio 
E  Young modulus 
φ( r,θ)  Slope of deflected plate 
ρ  Plate material density 
x  Non dimensional radius parameter =  r / a 
 
INTRODUCTION 

In general engineering applications, plates 
and shell type structures are frequently used 
(e.g. wing panels, ribs, fuselage, aircraft 
cockpits; car bodies). Most of these structures 
are made of light materials and "stiffened" 
using longitudinal and transverse members 
(spars, ribs ,etc.)[1]. 

Flat circular plates are widely used in 
electrical transducers either by sensing the 

center deflection with some displacement 
transducer or by adhering strain gages to the 
plate surface [2]. Most recent applications of 
micro-pressure sensors innovated the 
implantation of piezoresistors beneath the 
surface of a silicon die acting as a miniaturized 
pressure sensing plate or diaphragm [3]. The 
full scale deflection at the center of the plate (or 
diaphragm) must be about one third of its 
thickness to keep non-linearity less than 5%. 
However, if local strains rather than center 
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deflections (as is the case of micro-pressure 
sensors) is measured and in order to keep 
linearity, stiffened plates or diaphragms are 
often needed to cover a pressure range from 0.5 
in H2O up to 500 Pa.[4]. Although the stiffened 
rectangular plates has been thoroughly studied 
[5], the application of stiffeners to circular 
plates is not as much popular. 

The objective of the current study is to 
include the effect of the stiffening rings to 
the solution of the linear differential 
equation with variable coefficients 
governing the deflection of circular plates 
under static pressure loading by adopting a 
varying thickness function. The thickness is 
simulated as a radial distance repeated 
function approximated by a Fourier Series. 
The numerical results obtained by applying 
this procedure are compared to results 
obtained by solving the same problem by 
applying finite element  method using 
ANSYS  code.  
 
 
PROBLEM FORMULATION 

The linear differential equation with 
variable coefficients governing the 
deflection of circular plates under external 
pressure is given as [6], 
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where symbols are as appearing in notation 
and p and y are; 
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Assuming that the stiffening rings are of 

equal dimensions and are equally spaced 
along the radius of the plate, the thickness 
of a stiffened plate may be then looked after 
as a spatial domain periodic function. A 
periodic function is that function that 
repeats itself over and over again. 
Furthermore, as this function meets the 

Dirchlet conditions as it is single valued, 
finite, and have a finite number of 
discontinuities and maxima and minima in 
one cycle, it may be represented by a 
Fourier series. That is 
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NUMERICAL EXAMPLE  

In order to illustrate the potential of this 
method the following example is to be con-
sidered for analysis. A circular copper plate 
(or diaphragm) clamped at the edge and 
closed at the center with the dimensions and 
material properties as appearing in table 1. 

The Fourier series defining the stiffened plate 
or diaphragm thickness, assuming very sharp 
changes in thickness, is truncated up to 10 
harmonics. The two and the one stiffened plates 
or diaphragms differed in the width span of the 
(cyclic period ( T )) as appearing in figure(1a), 
(1b). 

Introducing the Fourier series 
representation for the thickness function 
into equation(1), calculation for the slope 
was carried out numerically using 
MATHCAD code considering zero slope 
conditions at the boundaries r=0 & r=a. 

Results were then integrated to obtain the 
deflection overall the considered margin. 
Furthermore, the same cases were checked 
by solving the problem using the finite 
element technique. ANSYS code was used to 
calculate the deflection of the said examples 
using (elastic shell element 93) element 
type and (1200 nodes). 
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Table 1 - Dimensions and material properties for the examples considered in this paper 

 Case(1) Case(2) Case(3) Case(4) 
h1,Minimum thickness 

mm. 0.1 0.1 0.1 - 
h2,Maximum thickness 

mm. - 0.4 0.4 0.4 
a, Outer radius of plate 

mm. 41 41 41 41 
Cyclic period ( T ) 

mm - (4/5) .a (2/5).a - 

Poisson's ratio 0.327 0.327 0.327 0.327 
E , Young modulus 

GPa 11.9 11.9 11.9 11.9 

 
 
RESULTS AND DISCUSSION 

As pointed out earlier, all the 
computation were carried out using either 
the MATHCAD code or the ANSYS finite 
element code for the examples illustrated in 
table (1).  

Figure (2) shows the deflection of the 
four different cases tabulated in table (1) 
against radial coordinates obtained by using 
the analytical method and assuming a 
uniform distributed pressure of (10 KPa) on 
surface. All the four cases show the same 
trend as the maximum deflection occurs at 
the center (r=0) of the diaphragm. However, 
the results also clearly indicate the role of 
the stiffening rings in minimizing the 
influence of the outside pressure on the 
deflection of the diaphragms both in 
magnitude and shape. Apparently 
introducing only one stiffening ring would 
reduce the maximum deflection occurring 
at the diaphragm mid span by about 300%. 

Yet, adding a second stiffening ring would 
only decrease the mid span deflection by 
about 75%, otherwise, the deflection at 
distant peripheral points is rarely affected 
by the presence of the second stiffening 
ring. The deflected form of the two 
stiffened ring shows also a tendency of 
flattening at the points near the mid span 
unlike the trend of the deflected curves of 
the non stiffened and the one-ring stiffened 
diaphragms. 

Figures 3 & 4 show a comparison of the 
results obtained by applying the recent 
thickness approximation technique and 
those obtained by the finite element method 
for cases 2 and 3 respectively. Obviously, 
both figures indicate very good agreement 
of the results of the two methods for the 
entire spatial region with maximum 
difference occurring at the mid span region. 
The tendency of the flattening near the mid 
span for the two rings stiffened diaphragm, 
case 3, is emphasized in figure 4. This trend 

 r 
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Fig 1 - a) One Stiffener Diaphragm b) Two Stiffener Diaphragm 
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is due to the presence of the two rings with 
the inner ring closer to the middle causing 
eventually the decrease in deflection at that 
area, keeping in mind that the decrease in 
deflection means the decrease in the stress 
fields at that region, consequently the 
diaphragm is usable for higher pressure 
values with the same basic dimensions.  

Finally, figure 5 demonstrates the relation 
of the external applied uniform pressure 
versus the maximum deflection at the center 
point of the diaphragm for all of the studied 
cases. All the cases showed that the 
maximum deflection rises linearly with the 
increasing pressure. However, the slope of 
the linear deflection / pressure relationship 
differs according to the thickness and to the 
presence and number of the stiffening rings 
as the lowest thickness case with no 
stiffening rings showed the higher slope 
relationship. Introducing one stiffening ring 
reduced the slope nearly three folds, yet, if 
another stiffening ring is added the slope 
only decreased about 75%. 

 

CONCLUSIONS 
An analysis of the deflection of isotropic 

circular plates with stiffening rings under the 

 action of static pressure has been studied 
by solving the  linear equation with variable 
coefficients governing the deflection of 
circular plates under such loading and 
introducing the effect of the stiffening rings 
by approximating the varying thickness/ 
plate radius by a Fourier series. 

1- It was found that introducing a stiffening 
ring would cause lower maximum 
deflection at the center of the diaphragm. 
If two stiffening rings are added, the 
deflection at the center is still lowered  
with a flattened deflected zone at the 
mid-span of the diaphragm. 

2- The results obtained by applying the new 
method showed very good agreement to 
those obtained by applying the finite 
element method. 

3- Pressure to deflection linearity was seen 
to be conserved for all the studied cases. 
However the adding of stiffening rings 
would lower the slope of the linear 
relationship. 

4- One stiffening ring is seen to offer the 
best increase in( pressure range) to the 
decrease in (sensitivity) compromise for 
pressure sensing diaphragms.  
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Fig 2 - Deflection of the four different cases against radial coordinates obtained by using the analytical method 
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Fig 3 - Comparison of the results obtained by applying the recent thickness approximation technique and those 

obtained by the finite element method for case 2 
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Fig 4 - -Comparison of the results obtained by applying the recent thickness approximation technique and those 

obtained by the finite element method for case 3 
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Fig 5 - The external applied uniform pressure versus the maximum deflection at the center point of the 

diaphragm for all of the studied cases 
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